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ABSTRACT 

This article addressed the discussion on the nonlinear dy-
namic response of a fluid-conveying pipe with a Y-type mani-
fold under different end conditions.  In which, the pipe element 
was regarded as an Euler-Bernoulli beam and the control vol-
ume of the flowing fluid was simplified as a jet.  The governing 
equation of such a nonlinear dynamic problem was derived us-
ing Hamilton’s principle and the momentum equation for the 
steady flow condition.  The Galerkin method and the Runge-
Kutta method with fourth-order truncation were used for solv-
ing the governing equation.  To validate the numerical model, 
the numerical results were compared with the existing litera-
ture and showed in good agreement.  In addition, parametric 
analyses of the nonlinear dynamic response have been done.  
Among which, the parameters such as the angle of the mani-
fold, the aspect ratio, the end constraints of the pipe and the 
flow velocity were taken into consideration.  It was concluded 
that : (1) the dimensionless critical flow velocity of the fluid-
conveying pipe rises up significantly and the dimensionless 
peak deflection decreases as the angle between the central axis 
of pipe and manifold increases; (2) the dimensionless peak de-
flection of the pipe goes up as the aspect ratio increases; (3) 
the dimensionless peak displacement of the pipe increases with 
an increase in the total number of degrees of freedom at the 
ends; (4) when the dimensionless velocity is small, dimension-
less peak deflection is insensitive to the dimensionless velocity, 
but when it is large, the dimensionless peak deflection rises up 
with the increase of the dimensionless velocity; (5) the nonlin-
ear behavior of the pipe is mainly dominated by the first-order 
mode; (6) the nonlinearity of the pipe is positively correlated 
with the aspect ratio and the total number of degrees of free-
dom at the ends, and this effect is significant.  However, there 
is a non-significant inverse correlation between the manifold 

angle and nonlinearity.  The research results in this paper may 
provide reference for the engineering practice of pipelines. 

Ⅰ. INTRODUCTION 

As an important fluid-structure coupling structure, pipelines 
are widely used in areas of various fields and vital systems, 
such as petroleum and chemical industry, fire-extinguishing 
system, irrigation system of farmland, water-supply system, 
biomedical field, aerospace field, hydraulic engineering, and 
ocean engineering field, etc.  Among which, the pipelines pro-
vide a fluid link between the machine (pump) and any external 
fluid.  The pipe fluid is excited by sources in the fluids such as 
pumps.  The pipe wall can be excited by mechanical connec-
tions to a vibrating machine.  While the machine is coupled 
either directly or via a flexible to pipe work which is, in turn, 
connected to a sub-structure by rigid or flexible supports.  Po-
tentially, many different types of wave could exist within a 
pipe structure and the entrained fluid.  However, only those 
waves which dominate at low frequencies can be induced the 
instability, chaos and large amplitude vibration of the pipeline.  
Consequently, a destructive accident or rupture of the pipeline 
occasionally occurs.  In such cases, the dominant stress waves 
are compressive, torsional and flexural on the pipe wall and 
the breathing mode traveling waves within the fluid.  The pipe 
can be treated simply as an additional element in the vibration 
isolation system if structural motion is the only concern.  How-
ever, the presence of the fluid leads to coupling effects between 
the fluid-borne and structure-borne waves as that energy con-
version can occur at pipe discontinuities such as bends and 
joints. 

As early as decades ago, some basic studies of the vibration 
behaviors of pipelines have been carried out by a number of 
scholars.  Such as Ashley and Haviland (1950) analyzed the 
vibration characteristics of the oil pipeline across Arabia.  Af-
ter that, Feodos’ev (1951) and Housner (1952) were the first 
to study the buckling stability of pipelines supported at both 
ends.  They used different methods to derive the linear equa-
tions of motion and drew conclusions about buckling stability.  
In 1955, the experimental and theoretical study of the trans-
verse vibration of the fluid-conveying pipe was carried out by 
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Long (1955).  He proposed that the natural frequencies of the 
pipe decreased with the increase of the flow velocity of the 
fluid.  Thurman and Mote (1969) took the lead in studying the 
nonlinear vibration of the fluid-conveying pipes.  By compar-
ing the linear and nonlinear periods, they recognized the im-
portance of the nonlinearity when the flow velocity was large.  
Païdoussis and Issid (1974) comprehensively considered fac-
tors such as gravity, external pressure, axial tension and in-
ternal loss of the structure, then developed a complete linear 
control equation for the pipe system.  Based on this govern-
ing equation, they studied the problem of vibration instability 
of pipelines under various boundary conditions.  In addition 
to the above research, in the next few decades, the research 
on the dynamic behavior of the fluid-conveying pipe has 
been carried out widely, as reviewed by Païdoussis (1998; 
2004) and Ibrahim (2010; 2011) concluded.  The research, 
related to the content of this paper, mainly involves the two 
aspects of nonlinear dynamics and the end configuration of 
the pipeline. 

To date, research into the nonlinear dynamics of fluid-con-
veying pipes has been included in the following.  Some re-
searchers have examined the boundary conditions of the pipe-
line.  Païdoussis and Semler (1993) used the Galerkin method 
to analyze the nonlinear plane dynamics of a cantilevered pipe-
line under intermediate spring support and revealed an inter-
esting bifurcation behavior.  Some people studied the issue of 
parametric resonance in pipeline systems.  Panda and Kar 
(2008) studied the nonlinear dynamics of a pipe conveying 
pulsating fluid in the case of combined parameter resonance 
and main parameter resonance.  The stability, bifurcation and 
response characteristics of the pipeline were studied by using 
the amplitude and frequency detuning of the harmonic velocity 
perturbation as the control parameters.  Nonlinear vibration of 
a fluid-conveying pipe subjected to a transverse external har-
monic excitation was investigated by Zhang et al. (2016) in the 
case with internal resonance.  In the supercritical regime, the 
subharmonic, superharmonic, and combination resonances 
were examined in the presence of the internal resonance.  Be-
sides, The steady-state responses and their stability were de-
termined.  Several research methods have been developed dur-
ing the research process.  Setoodeh and Afrahim (2014) pro-
posed the homotopy analysis method (HAM) to study the non-
linear vibration behavior of micro-pipes conveying fluid con-
sisting of functionally graded materials (FGM).  The results 
showed that the length scale parameter and the FG power-law 
index have significant effects on the fundamental frequency 
and the critical velocity of the FG micro-pipes.  Wang and Ni 
(2008) used the differential quadrature method (DQM) to 
study the nonlinear dynamic behavior of a fluid-conveying 
curved pipe subjected to constrained motion and harmonic ex-
citation.  The results showed that the fluid-conveying curved 
pipe behaves as an ordinary linear system when motion is not 
restricted, but there is harmonic excitation.  However, if the 
pipeline movement is constrained by three axial restrictions, 
the system will exhibit nonlinear dynamic phenomena.  Zhang 

et al. (2016) developed a new method that combines the  
Fourier cosine series with the Runge-Kutta method, which can 
conveniently and effectively solve the nonlinear problems of 
general boundary conditions and additional springs and 
masses.  In addition, there have also been studies of nonlinear 
vibration of underwater pipelines that consider current and 
combined wave-current (Tang et al., 2005) or at supercritical 
flow velocities (Yoshizawa et al., 2008).   

The dynamics of fluid-conveying pipes with special-shaped 
components at one end were investigated in recent.  Problems 
in bio-medicine, such as heart bypasses and cardiovascular 
diseases, have directed research towards cantilevered pipes.  
The planar dynamics of a fluid-conveying cantilevered pipe 
with a small mass attached at the free end was first studied, 
both theoretically and experimentally (Païdoussis and Semler, 
1998).  It has been shown that for a system without end-mass, 
there is only one stable periodic solution.  If there is a small 
end-mass, the dynamics are more complex and there are dif-
ferent types of periodic solutions.  Rinaldi and Païdoussis 
(2010) studied, theoretically and experimentally, the dynamics 
of a cantilevered flexible pipe with special end pieces.  They 
found that different pipe-end configurations of cantilevered 
pipes had completely different dynamics.  Research into the 
effect of the pipe-end configuration on the stability and critical 
flow velocity has also been gradually raised.  Wang and Dai 
(2012) investigated the vibration and stability properties of 
fluid-conveying pipes with two symmetric elbows fitted at the 
downstream end, it was found that the stability of the pipeline 
can be greatly enhanced with this downstream elbows and the 
vibration frequency of the pipe can be effectively controlled 
by changing the angle of the elbows.  Pipe-end configuration 
has been studied for carbon nanomaterials.  Vibration and sta-
bility analyses of a Y-shaped single-walled carbon nanotube 
(SWCNT) embedded in viscoelastic Pasternak-based and 
transported nano-magnetic viscous fluids (NMF) were inves-
tigated by Arani and Zerei (2015).  Their results showed that 
increasing the angle between the CNT center line and the 
downstream elbows reduced system stability.  Besides, Firouz-
Abadi et al. (2013) analyzed the stability of a horizontal canti-
levered fluid-conveying pipe with an inclined terminal nozzle 
to investigate the effects of nozzle angle, nozzle aspect ratio, 
mass ratio and bending-to-torsional stiffness ratio on the chat-
ter velocity of the system. 

Comprehensive reviews of the nonlinear dynamic behavior 
of fluid-conveying pipes and the dynamics of fluid-conveying 
pipes with special-shaped components at one end are given in 
the above literature.  It can be found that the existing research 
on the end-transformed pipelines mainly focuses on the canti-
lever tubes, and is mainly concerned with the natural frequen-
cies and critical flow velocity problems, with little research 
into the nonlinear dynamic response.  To combine the issues of 
nonlinear dynamic behaviors of fluid-conveying pipes and its 
instability characteristics sensitive to the end pieces of a fluid-
conveying pipe, this paper will conduct an integrated study and 
discussions regarding the nonlinear dynamic response of a  
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Fig. 1.  Geometry of a fluid-conveying pipe with a Y-type manifold. 

 

 
fluid-conveying pipe with special-type manifold under differ-
ent end conditions, where the effects of related parameters in 
relations to the critical flow velocity and the nonlinear dis-
placement response are involved. 

Ⅱ. PROBLEM DESCRIPTION 

This study considers a linear elastic pipe with a Y-type man-
ifold fitted at the downstream end.  The pipe conveys an in-
compressible fluid with a velocity U, which is subjected to a 
uniform force p(x,t).  The geometry and the Cartesian coordi-
nate system are shown in Fig. 1, in which the origin of the co-
ordinate system (x, z) is considered to be located in space at 
the left end of the pipe.  A Y-Type manifold, which is symmet-
rical about the X-axis, is configured at the downstream end of 
the pipe.  The angle (α) between the central axis of the fluid-
conveying pipe and the manifold varies from 0 to 90.  The 
pipe length is L; the cross-sectional area of the pipe is A; the 
inner and outer diameters of the pipe are d and D, respectively.  
This work will conduct an integrated study and discussions re-
garding the nonlinear dynamic response of a fluid-conveying 
pipe with a special-type manifold under different end condi-
tions, where the effects of related parameters in relations to the 
critical flow velocity and the nonlinear displacement response 
are involved. 

1. Governing differential equations 
First of all, the following assumptions are made: (1) the 

fluid within the pipe (internal fluid) is incompressible and has 
a constant velocity; (2) the cross-section of the elastic pipe is 
uniform, and the effects of gravity, internal damping, pressur-
ization effects, shear, torsion, and rotational inertia can be ne-
glected; (3) the length of special-shaped manifold is small 
enough to be neglected; (4) the pipe is a slender beam model, 
and there is a geometric nonlinearity that can not be ignored 
during transverse vibration.  As a result, the influence of the 
axial force caused by the axial strain during the deformation 
process is considered here. 

Adopting the small deformation assumption and taking the 
pipe as an Euler-Bernoulli beam, the governing equations of 
motion for the fluid-conveying system are derived by using 
Hamilton’s principle, which is defined as: 

 
2 2
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( ) 0
t t

nct t
T V dt W dt       (1) 

where T is the total kinetic energy of the system; V is the po-
tential energy of the system, consisting of the strain energy and 
the work done by the conservative force; Wnc denotes the work 
done by the non-conservative force. 

The total kinetic energy of the fluid-conveying pipes system 
includes the kinetic energy of the pipe, the kinetic energy of 
the internal fluid and the kinetic energy of the manifold, which 
is represented as: 
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where: w(x,t) is the deflection of the pipe; and mp, mf and me are 
respectively the mass per unit length of the pipe, the mass per 
unit length of the internal fluid and the mass of the special-type 
manifold.  The strain energy of the system has three components, 
the bending strain energy, the average axial strain energy and the 
axial strain energy caused by the interaction of the internal flow 
and the manifold, described by the following equation: 
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where: EI is the flexural rigidity of the pipe; EA is the tension 
or compression rigidity of the pipe; L is the length of the fluid-
conveying pipe; and Fe is the tension exerted on the pipe due to 
the interaction of the internal flow and the manifold.  The work 
done by an externally applied force p(x,t) can be defined as: 
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Fig. 2.  Control volume of fluid at the Y-type manifold. 

 
 

where p(x,t) is the distributed excitation.  Substituting equa-
tions (2) through (4) into Eq. (1), the following expression is 
derived: 
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where x is the axial coordinate and t is time.  When the fluid-
conveying pipe is supported at both ends (pinned–pinned; 
clamped–clamped; clamped–pined), we can easily conclude 

that
2

2
( ) 0e

w
m x L

t
 

 


.  Thus the governing equation of mo-

tion for a pipe system supported at both ends is given by: 
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The next step is thus to derive the tensile force Fe, by ana-
lyzing the control volume of fluid, as shown in Fig. 2.  Fluid 
flows into the manifold from the pipe at section 1–1 (the cross-
sectional area is Af), while outflow from the characteristic sec-
tions 2-2 and 3-3 (each cross-sectional area is 0.5Af).  Since we 
assumed that we can neglect gravity and pressurization effects, 
the control volume of fluid can be simplified as a jet model.  
The forces (Fx and Fy) of the manifold acting on the control 
volume of fluid can be obtained by using the steady flow mo-
mentum equation (Larock et al., 2000).  The components of 
the momentum equation are given by: 
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where: ρ is the fluid density; Q is the volume flow rate through 
the pipe; U is the mean flow velocity of the transverse profile; 
and βi is the compensation coefficient of momentum for each 
characteristic section, which is usually taken as 1. 

The force (Fe) of fluid on the pipe-end piece, opposing Fx, 
is: 

 2 (cos 1)e x fF F m U        (9) 

Substituting Eq. (9) into Eq. (6), the governing differential 
equation can be rewritten as: 
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2. Boundary conditions at the pipe ends 
The fluid-conveying pipe is usually considered to be pinned 

or clamped at each end (x = 0 and x = L).  Three combinations 
of pipe-end conditions are considered here: pinned–pinned 
(P–P), clamped–clamped (C–C) and clamped–pinned (C–P).  
The boundary conditions at the ends are as follows. 
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C–P, clamped (x = 0)–pinned (x = L): 
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Table 1  Values of λ1 and σ1 for different boundary conditions. 

Boundary conditions i = 1 i = 1 i = 1 i = 1 

ε = 0 ε = 1 λ1 σ1 λ2 σ2 λ3 σ3 λ4 σ4 

Pinned Pinned π 1 2π 1 3π 1 4π 1 
Clamped Clamped 4.730 0.983 7.853 1.001 10.984 1 14.137 1 
Clamped Pinned 3.927 1.001 7.069 1 10.210 1 13.352 1 

 
 

3. Non-dimensionalization 
The following dimensionless variables are introduced for 

research convenience: 
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Eq.(9) can be written in dimensionless form as. 
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The dimensionless boundary conditions are given as fol-
lows: 

 
P–P, pinned (ε = 0)–pinned (ε = 1): 
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C–C, Clamped (ε = 0)–Clamped (ε = L): 
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C–P, Clamped (ε = 0)–Pinned (ε = L): 
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Ⅲ. SOLUTION PROCEDURE 

The Galerkin method is used to discretize the infinite-di-
mensional pipe system, and the dimensionless displacement is: 
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where: ( )iq   are the generalized coordinates of the discretized 
pipe system; and ( )i    are the beam eigenfunctions for the 
corresponding boundary conditions, given by： 
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The values of coefficients i, i, and ki are determined ac-
cording to the boundary conditions of the pipe: 

 
(a) P–P, pinned (ε = 0)–pinned (ε = 1): 
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(b) C–C, clamped (ε = 0)–clamped (ε = L): 
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i i
i i i

i i

k k k k

 
  

 


 


     
 (25) 

(c) C–P, clamped (ε = 0)–pinned (ε = L): 

 

1 2 3 4

cosh cos
tan tanh , ,

sinh sin

1

i i
i i i

i i

k k k k

 
  

 


 


     
 (26) 

The values of coefficients i 
and i under different bound-

ary conditions are shown in Table 1. 
Substituting Eq. (22) into Eq. (18), multiplying by 

1

0
( )j d    and integrating from 0 to 1, yields: 

 
   

             

2
2

2 4

8(1 )
( cos )

(1 )

2

a
A q u mm

a

B q u C q I q p







  



      
 (27) 

where: 

   1 (4)

0
{ } { } T

j iA d    ; (28) 

   1 (2)

0
{ } { } T

j iB d    ; (29) 
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   1 (1)

0
{ } { } T

j iC d    ; (30) 

   1

0
{ } { }T

j iI d    ; (31) 

   1 2( ), ( ), , ( )
T

iq q q q      ; (32) 

   1 2( ), ( ), , ( )
T

iq q q q         ; (33) 

   1 2( ), ( ), , ( )
T

iq q q q         ; (34) 

  
1

0
{ } ( , )jp p d     ; (35) 

 
2

1 (1)

0
1

( ) ( )
N

i
i

mm q d   


 
  

 
 ; (36) 

For simplicity, Eq. (27) can be expressed as: 

           I q S q R q p     (37) 

where: 

    2S u C ; (38) 

      
2

2
2 4

8(1 )
( cos )

(1 )

a
R A u mm B

a





  


; (39) 

Eq.(37) shows a second-order ordinary differential system 
of nonlinear equations.  There are many ways to solve this 
problem.  In this paper, a four order Runge-Kutta method is 
used to solve it.  After getting the solution of Eq.(37), the di-
mensionless deflection of the pipe can be obtained by Eq.(22). 

Ⅳ. RESULTS AND DISCUSSIONS 

In this part, based on the formulations obtained above, the 
numerical solutions of the nonlinear dynamic response of a 
fluid-conveying pipe with special-type manifold are conducted 
and discussed.  Matlab software is used to program the calcu-
lations and solve the equations.  We analyze the model as fol-
lows.  First, the numerical results are compared with the exist-
ing literature to verify the correctness and accuracy of our 
method.  Second, the critical flow velocity of a fluid-convey-
ing pipe with Y-type manifold is discussed.  Third, the contri-
bution of different mode to the dimensionless deflection is dis-
cussed.  Fourth, the effects of different end conditions on pipe 
dimensionless nonlinear displacement are analyzed.  Fifth, the 
effect of the angle(α) between the central axis of the fluid-con-
veying pipe and the manifold is discussed.  Sixth, the effects  

Table 2  Values of physical parameters. 

Parameters Items Values 

E Elastic modulus (GN/m2) 210 
L Length of the pipe (m) 15 
D External diameter (m) 0.25 
d Internal diameter (m) 0.125 
α The angle of the manifold () 45 
ρp Pipe density (kg/m3) 7800 
ρf Internal fluid density (kg/m3) 870 
u Dimensionless fluid velocity 1 

p(ε,τ) Dimensionless distributed excitation 0.06 π 

 
 

 
Fig. 3. Dimensionless time histories of the dimensionless pipe deflection 

at the midpoint. 

 
 

of the aspect ratio (L/D) and fluid velocity are analyzed.  Fi-
nally, the influence of different parameters on the nonlinearity 
of the pipe is discussed by comparing the linear and nonlinear 
transient dimensionless displacement responses.  In the fol-
lowing sections, if not otherwise specified, the parameters 
listed in Table 2 are used.  

1. Validation  

In order to verify the correctness and accuracy of the nu-
merical method proposed in this study, the results are com-
pared with those in the existing literature.  In the verification 
process, all material parameters and geometric parameters are 
consistent with the cited references.  A P–P fluid-conveying 
pipe is considered here.  The dimensionless time histories of 
the dimensionless pipe deflection at the midpoint ( ε = 0.5 ) are 
plotted in Fig. 3.  As is demonstrated in Fig. 3 that results gen-
erated by the present method agree well with those of Liang’s 
(Liang et al., 2018).  

Table 3 shows the first four frequencies of the pipe with dif-
ferent end conditions for u = 0.  The relative error between the 
present results and the exact results from Ni et al. (Ni et al., 
2011) and Thomson (Thomson., 1988) is within 0.033%.  The 
above shows the correctness and high precision of the present 
method. 
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Table 3  Dimensionless natural frequency of the pipe with different end conditions for u = 0. 

End conditions ω1 ω2 ω3 ω4 

P–P 
Present 9.8696 39.4784 88.8264 157.9173 
Exact solution (Thomson, 1988; Ni et al., 2011) 9.8696 39.4784 88.8264 157.9173 
Relative error 0.0000% 0.0000% 0.0000% 0.0000% 

C–P 
Present 15.4213 49.9708 104.2441 178.2759 
Exact solution (Thomson, 1988; Ni et al., 2011) 15.4182 49.9649 104.2477 178.2697 
Relative error 0.0201% 0.0118% 0.0035% 0.0035% 

C–C 
Present 22.3729 61.6696 120.8642 199.8547 
Exact solution (Thomson, 1988; Ni et al., 2011) 22.3733 61.6728 120.9034 199.8594 
Relative error 0.0018% 0.0052% 0.0324% 0.0024% 

 
 

Table 4 Dimensionless critical flow velocities with increas-
ing angles under end conditions P–P, C–C and C–
P. 

α/π 
ucr 

P–P C–C C–P 

0 3.15 6.31 4.49 
0.05 3.17 6.35 4.52 
0.10 3.23 6.47 4.61 
0.15 3.33 6.69 4.76 
0.20 3.50 7.02 4.99 
0.25 3.74 7.51 5.34 
0.30 4.10 8.23 5.86 
0.35 4.67 9.37 6.67 
0.40 5.66 11.35 8.08 
0.45 7.95 15.95 11.35 

 

2. Critical flow velocity  

Natural frequencies and critical flow velocities are an es-
sential part of a pipeline system.  In this section, the critical 
flow velocities of a fluid-conveying pipe with special-type 
manifold under the three boundary conditions (P–P, C–C and 
C–P) are examined.  For these three sets of boundary condi-
tions, the stability of the pipe is mainly determined by the first-
order mode, so the critical flow velocities examined here refer 
to the flow velocities when the first-order mode is about to de-
stabilize.  In the research process, 10 different angles between 
the central axis of the fluid-conveying pipe and the manifold 
were used. 

Table 4 shows the evolution of dimensionless critical flow 
velocities with increasing angles for boundary conditions P–P, 
C–C and C–P, respectively.  When all other factors are the 
same, the C–C pipe has the largest dimensionless critical flow 
velocity, followed by the C–P pipe.  The dimensionless critical 
flow velocity is the smallest for the P–P pipe.  In addition, it 
can be found that as the angle increases, the dimensionless crit-
ical flow velocity of the fluid-conveying pipe rises up signifi-
cantly for all three end conditions.  Therefore, the configura-
tion of the special-type manifold can improve the stability of 
the pipe. 

3. Modal separation analyses 

This part analyzes the influence of first to fourth-order 
modes on the dimensionless deflection of the fluid-conveying 
pipe with a special-type manifold.  The boundary condition is 
P–P and the manifold angle α = 45. 

Dimensionless time histories and spectral analyses at two 
selected positions (ε = 0.2 and ε = 0.5 ) are plotted in Fig. 4 
and Fig. 5.  The left column shows the dimensionless time his-
tories in the interval τ  [0,3], while the right column is spec-
tral analysis based on fast Fourier transform algorithm (FFT).  
The dimensionless displacement for mode 1 has the same scale 
as the original one, and the displacement curve of mode 1 has 
a similar shape to the original one.  However, the other modes 
differ from the original both in terms of scale and shape.  We 
conclude that the first mode is the most important in the di-
mensionless displacement of the pipe, which is also supported 
by the spectral analysis. 

4. Effects of the different end conditions 

This section analyzes the influence of three different bound-
ary conditions (P–P, C–C and C–P) on the dimensionless non-
linear deflection of the fluid-conveying pipe with a Y-type 
manifold.  A four-order mode truncation is adopted in the Ga-
lerkin method to ensure the convergence and accuracy of the 
results.  The dimensionless time histories of the nonlinear dis-
placement at the midpoint (ε = 0.5) of the pipe under different 
end conditions are shown in Fig. 6.The fluid-conveying pipe 
with Y-type manifold for the P–P end condition has the largest 
peak displacement, followed by C–P, and the vibration ampli-
tude of the pipe for C–C is the smallest.  The dimensionless 
peak displacement of the pipe increases with an increase in the 
total number of degrees of freedom at the ends. 

5. Effects of the manifold angle (α) 

This section examines the response of the pipe to change in 
the angle between the central axis of the fluid-conveying pipe 
and the manifold.  Different angles (0, 30, 45, 60, and 90) 
are used.  Two indexes of dai and pai are introduced to quanti-
tatively describe the influence of the manifold angle on the 
peak deflection and period of nonlinear displacement response, 
such that: 
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Fig. 4. (a) Mode separation of dimensionless time histories of dimensionless displacement in a dimensionless time interval τ  [0,3] at the point ε = 0.2; 

(b) Spectral analysis of (a). 
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Fig. 5. (a) Mode separation of dimensionless time histories of dimensionless displacement in a dimensionless time interval τ  [0,3] at the point ε = 0.5; 

(b) Spectral analysis of (a). 
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Fig. 6.  Dimensionless time histories of dimensionless displacement in a dimensionless time interval τ  [0,5], at the midpoint (ε = 0.5). 

 
 

 
Fig. 7.  Change in dimensionless dai with increasing angles for end conditions P–P, C–C and C–P. 

 
 

 
Fig. 8.  Change in dimensionless pai with increasing angles for end conditions P–P, C–C and C–P. 
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 (40) 

where: dai is the deflection angle index; pai is the period angle 
index; dwithout-manifold is the dimensionless peak deflection of 
pipe without the manifold; dwith-manifold is the dimensionless 

peak deflection of pipe with the manifold; pwithout-manifold is the 
dimensionless period of pipe without the manifold; and pwith-

manifold is the dimensionless period of pipe with the manifold.  
The influence of manifold angle on displacement response is 
positively related to the values of the two indexes. 

Fig. 7 and Fig. 8 show change in dai and pai with increasing 
angles for end conditions P–P, C–C and C–P.  As the angle in-
creases, the dimensionless peak deflection and dimensionless 
period of the pipe decreases.  This change is most obvious for 
P–P and least obvious for C–C.  The result shows that the  
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Fig. 9.  Time histories of displacement at the midpoint (ε = 0.5) for different aspect ratio, for end condition P–P. 

 
 

 
Fig. 10. Dimensionless time histories of dimensionless displacement at the midpoint (ε = 0.5) for different dimensionless velocity, for end condition  

P–P. 

 
 

configuration of the Y-shaped manifold enhances the stability 
of the pipe to some extent.  According to Eq. (8), the change 
in the angle affects the axial tensile force, which changes the 
dimensionless displacement response. 

6. The effects of aspect ratio and fluid velocity 

This section discusses the influences of the aspect ratio (L/D) 
on the nonlinear behavior of the fluid-conveying pipe with a 
Y-type manifold.  Different values are used for the aspect ratio 
(L/D = 50, 60, 75, and 80).  Fig. 9 shows that the dimensionless 
peak deflection rises up with the increase in the aspect ratio.   

Fig. 10 shows the dimensionless time histories of the non-
linear displacement with different dimensionless flow velocity 
(u = 0, 0.2, 1 and 2).  The results show that when the dimen-
sionless velocity is small (u = 0 or 0.2), dimensionless peak 
deflection is insensitive to the dimensionless velocity.  When 
the dimensionless velocity is relatively large (u = 1 or 2), the 
dimensionless peak deflection increases with the increase in 
the dimensionless velocity.  

7. Effects of parameters on the nonlinearity 

This section discusses the effects of the end condition, as-
pect ratio, and the angle between the central axis of the fluid-

conveying pipe and the manifold on nonlinearity by comparing 
the linear and nonlinear dimensionless time histories.  In order 
to quantitatively assess the strength of nonlinearity, the follow-
ing two indexes, for deflection and period, are introduced. 

 

,linear nonlinear
ni

linear

linear nonlinear
ni

linear

d d
d

d

p p
p

p







 (41) 

where dni is the deflection nonlinearity index; pni is the period 
nonlinearity index; dlinear is the linear dimensionless peak deflec-
tion; dnonlinear is the nonlinear dimensionless peak deflection; plin-

ear is the linear dimensionless period; and pnonlinear is the nonlin-
ear dimensionless period.  The greater the dni and pni values, the 
more significant the nonlinearity of the pipeline system. 

To begin with, the effect of the end conditions on nonlinearity 
is studied.  From the data in Table 5, it is clear that the two in-
dexes of dni and pni are fairly small for C–C (0.44% and 0.35%), 
while those for P–P are significantly greater (11.75% and 
9.72%).  This indicates that the nonlinearity effect of pipeline 
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Table 5. Nonlinearity indexes dni and pni versus end condi-
tions. 

End condition dni (%) pni (%) 

C–C 0.44 0.35 
C–P 4.14 3.83 
P–P 11.75 9.72 

 
 

Table 6. Nonlinearity indexes dni and pni versus manifold 
angle α for end condition P-P. 

α () dni (%) pni (%) 

0 12.69 9.85 
30 12.30 9.67 
45 11.75 9.42 
60 11.13 9.20 
90 9.78 7.94 

 
 

Table 7. Nonlinearity indexes dni and pni versus aspect ra-
tio L/D for end condition P-P. 

L/D dni (%) pni (%) 

50 8.53 8.95 
60 11.75 10.18 
75 19.60 14.45 
80 23.80 20.05 

 
 

increases with the increase in the total number of degrees of 
freedom at the ends.  Nonlinearity is sensitive to the end con-
ditions. 

The value of the manifold angle α is varied in the range of 
[0, 90].  Table 6 shows that the values of dni and pni decrease 
as α increases, but the ranges of the decrease are smaller 
(2.91% and 1.91%).  This shows that there is an inverse corre-
lation between the manifold angle and nonlinearity, but the in-
fluence is relatively insignificant.  

Finally, the effect of aspect ratio on nonlinearity is exam-
ined.  The results are shown in Table 7.  There is a positive 
correlation between the nonlinearity of the pipeline system and 
the aspect ratio. 

Ⅴ. CONCLUSIONS 

In this study, We studied the nonlinear dynamic response of 
a fluid-conveying pipe with a Y-type manifold for three end 
conditions, P–P, C–C and C–P.  Using Hamilton’s principle 
and the momentum equations for a steady flow, the governing 
differential equations were derived and solved using the Ga-
lerkin method and the Runge-Kutta methods with truncation 
order 4.  The numerical results were compared with the exist-
ing literature and showed in good agreement. 

Parametric analyses of the nonlinear dynamic response 
were conducted.  Among which, the parameters such as the  
angle of the manifold, the aspect ratio, the end constraints of 

the pipe and the flow velocity are taken into consideration.  It 
was concluded that : (1) the dimensionless critical flow veloc-
ity of the fluid-conveying pipe rises up significantly and the 
dimensionless peak deflection decreases as the angle between 
the central axis of pipe and manifold increases; (2) the dimen-
sionless peak deflection of the pipe goes up as the aspect ratio 
increases; (3) the dimensionless peak displacement of the pipe 
increases with an increase in the total number of degrees of 
freedom at the ends; (4) when the dimensionless velocity is 
small, dimensionless peak deflection is insensitive to the di-
mensionless velocity, but when it is large, the dimensionless 
peak deflection rises up with the increase of the dimensionless 
velocity; (5) the nonlinear behavior of the pipe is mainly dom-
inated by the first-order mode; (6) the nonlinearity of the pipe 
is positively correlated with the aspect ratio and the total num-
ber of degrees of freedom at the ends, and this effect is signif-
icant.  However, there is a non-significant inverse correlation 
between the manifold angle and nonlinearity. 
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