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ABSTRACT 

This paper describes a theoretical study of the problem of 
linear waves propagating over an emergent poroelastic me-
dium.  Lan-Lee’s poro-elastomer theory is extended to derive 
a new analytical solution for describing this problem, with the 
free surface boundary condition discussed in the context of a 
poroelastic medium, a topic that has rarely been covered by 
previous studies.  In the present approach, the problem domain 
is divided into three subregions and a negligible water-exposed 
region.  Using general solutions for each region and the match-
ing dynamic and kinematic conditions for neighboring regions, 
a set of simultaneous equations is developed and numerically 
solved.  The present analytic solution compares reasonably 
well with simplified cases of impermeable, rigid structures and 
porous structures.  Using this analytic solution, the wave re-
flection and transmission induced by different key parameters 
of the poroelastic medium are studied.  The results show that 
softer poroelastic media can transform the incident waves.  For 
almost impermeable conditions, a softer emergent medium in-
duces resonance, whereas higher permeability depresses the 
resonant effects and induces significant wave damping. 

I. INTRODUCTION 

In recent years, fears about global climate change impacting 
extreme weather events and rising sea levels have led to in-
creased interest in nonintrusive forms of shore protection such 
as vegetation.  Such schemes are intended to protect the shore-
line and provide a natural habitat for many different species of 
fish, amphibians, shellfish, insects, and birds (Augustin et al., 
2009).  Using near-natural and ecological coastal engineering 
increases the demands on structures and construction methods, 
as they no longer have the simple purpose of defense.  Not only 
should the construction methods accommodate the natural en-

vironment, but various structural materials from local environ-
ments should also be used (Lan et al., 2013).  Various novel 
wave-defense structures can use flexible materials such as rub-
ber-dams, multi-material composite breakwaters, and flora, in-
stead of the rigid materials of concrete and block stone, to re-
duce the wave energy transferred to the shoreline.  The flexi-
bility of soft materials means that the deformation induced by 
water waves disturbs the flow field in the vicinity of the struc-
ture, particularly when compared with their impermeable re-
flective concrete counterparts.  For the wave attenuation effect 
caused by the permeable structures, different structural mate-
rial properties have different wave damping characteristics, 
such as the flow configurations of Darcy, Darcy-Forchheimer 
and vegetation drag resistance, etc.  Therefore, in academic 
and practical studies, near-natural and ecological wave-de-
fense structures need to consider both the flexibility and per-
meability of the material composition, such as the poroelastic 
type.  This paper theoretically investigates the additional flex-
ible effect of permeable media on wave scattering and energy 
dissipation. 

The fundamental research on wave propagation through po-
roelastic media mainly includes two major categories: seismic 
wave and gravity water wave.  Seismic waves are divided into 
body waves transmitted inside the medium (including P waves 
and S waves) and surface waves transmitted on the surface of 
the medium (including Rayleigh waves, Love waves, Stoneley 
waves, etc.).  Related researches focus on the conduction ve-
locity and attenuation of seismic waves in poroelastic/poro-
viscoelastic viscoelastic media containing homogeneity/ 
mesoscopic inhomogeneity (Liu, 2009; Liu et al., 2011; Zhang 
et al., 2014; Tcheverda et al., 2017; Tong et al., 2017; Xie and 
Yang, 2018).  Various studies on interactions between gravity 
water waves and flexible media have considered flexible struc-
tures (Watarai et al., 1987; Lee and Chen, 1990; Lee and Lan, 
1991), flexible and porous breakwaters (Wang and Ren, 1993; 
Yip et al., 2002; Shanta and Sahoo, 2006; Mandal and Sahoo, 
2014), elastic membranes and air balloons (Chou and Fang, 
1995; Sawaragi, 1995), submerged flexible mounds and reefs 
(Ohyama et al., 1989; Lan and Lee, 2010; Lan et al., 2011; 
2013; 2016), and aquatic vegetation fields (Möller et al., 1999; 
Mendez and Losada, 2004; Li and Yan, 2007; Augustin et al., 
2009; Stratigaki et al., 2011; Jadhav et al., 2013; John et al., 
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2015).  The complex dynamic mechanisms in poroelastic me-
dia complicate the study of wave interactions with poroelastic 
structures.  The problem of waves propagating over poro-elas-
tomers involves analyses of wave motion, the  
dynamic behavior of poroelastic media, the interaction be-
tween waves and elastomers, and the fluid flux inside the po-
roelastic media (Lan and Lee, 2010).  Biot’s theory (1956) has 
often been used to describe the behavior of poroelastic media 
for waves propagating over flexible and permeable structures.  
The flow inside the porous media obeys Darcy’s seabed law, 
the Darcy-Forchheimer (high permeability with turbulent  
resistance) relation, or is affected by vegetation.  Related in-
vestigations have examined a poroelastic seabed of infinite 
width (Chen et al., 1997; Tseng et al., 2008) as well as flexible 
and permeable plates or breakwaters (Wang and Ren, 1993; 
Yip et al., 2002).  These studies employed a simplified formu-
lation in which the unlimited width of the bed and particular 
structural size ensured no changes along the horizontal direc-
tion and the thin poroelastic plates reduced the complexity of 
the flexible and permeable mechanisms.  For finite-size homo-
geneous structures, Lan and Lee (2010) improved Biot’s  
theory for the evaluation of Darcy-Forchheimer permeable  
resistance introduced by Sollitt and Cross (1972).  They ana-
lyzed the reflection, transmission, and energy dissipation of 
regular waves passing over a single rectangular submerged po-
roelastic breakwater.  Since the submerged medium does not 
encounter the free surface boundary, Lan-Lee’s poro-elastomer 
theory ignored the static pore pressure.  Based on the work of 
Lan and Lee (2010), the studies on waves interaction with po-
roelastic submerged media have considered a series of soft 
reefs (Lan et al., 2011), the adjoining-type composite break-
waters (Lan et al., 2013), and the mound-type composite struc-
tures (Lan et al., 2016).  Among them, Lan et al. (2011) veri-
fied the rationality of Lan-Lee’s poro-elastomer theory in the 
case of poroelastic media by conducting an experiment on a 
series of soft permeable breakwaters.  Li and Yan (2007) pro-
posed a fully three-dimensional numerical model in which the 
Reynolds-averaged Navier-Stokes equations simulate the 
wave-current-vegetation interaction phenomena.  Based on the 
Biot theory, Tong et al. (2017) studied the propagation of non-
linear waves in porous media by introducing three new nonlin-
ear parameters to consider the coupled nonlinearity between 
the solid and fluid components in porous media. 

In this study, as an extension of Lan-Lee’s poro-elastomer 
theory (Lan and Lee, 2010) and consideration of the static pore 
pressure, an analytical solution is obtained for wave scattering 
by an emergent poroelastic medium.  The study deals with the 
free surface boundary condition in the field of poroelastic  
medium that previous studies have paid less attention.  A par-
tition method is employed and the solution is given in terms of 
orthogonal eigenfunctions.  The matching conditions of the 
pore pressure and normal flow flux, as well as the continuity of 
both the medium displacements and stresses, are imposed on the 
interface boundaries.  This solution provides a general and  
economical approach for investigating the wave scattering and  

 
Fig. 1. Sketch of boundary value problem of waves passing an emergent 

poroelastic medium. 

 
 

energy dissipation over a pseudo-natural structure without ex-
tensive experimentation.  Various parameters are analyzed to 
account for the reflection and transmission coefficients.  The 
results calculated from the analytical solution are compared 
with previous results, and the key features of wave transfor-
mation induced by various shear moduli and permeable coef-
ficients are discussed. 

II. PROBLEM FORMULATION 

An emergent poroelastic medium with a rectangular shape 
is fixed on an impermeable seabed, and is subjected to incident 
waves.  The poroelastic medium is assumed to be homogene-
ous, isotropic, and elastic.  A schematic of this formulation is 
illustrated in Fig. 1, where d is the water depth, h and b are the 
height and width of the poroelastic medium, h1 + h2 = h, and 
h1 = d.  A two-dimensional Cartesian coordinate system is used, 
with the origin located at the interface between the impermea-
ble seabed surface and the center of the poroelastic medium, 
the x-axis pointing to the right, and the z-axis pointing upward.  
Incident waves propagate in the negative x direction.  The 
wave profile i and velocity potential function i can be ex-
pressed as 
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where  Re  is the real part of a complex variable, Hi is the 

incident wave height, k0 is the wavenumber, 2 T   is the 

angular frequency, T is the wave period, t  denotes time, g is 

gravitational acceleration, and 1i    is the complex unit.  
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To solve this problem, the study domain is divided into two 
fluid regions (regions I and II) and a poroelastic (PE) region, 
as shown in Fig. 1.  The kinematic and dynamic effects of the 
exposed water part of the poro-elastomer are ignored. 

1. Governing Equations for Poroelastic Media  

The poroelastic medium in the PE region is assumed to be 
homogeneous, isotropic, and saturated with poroelastic fea-
tures.  In this situation, the governing equations for the poroe-
lastic medium field are satisfied three decoupled partial differ-
ential equations (PDEs) in components of displacement in the 
x- and z-directions (, ), and the pore pressure (P) as follows:  
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The coefficients 1, 2, and 3 are given by: 
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where w  is the density of the fluid, 'n  is the porosity of the 

poroelastic medium,  is the compressibility of the pore fluid, 
(1 ') 's wn n       is the mean density of the poroelastic 

medium, s   is the density of the elastic solid structure, 

[2(1 )]G E    is the shear modulus, E is Young’s modulus, 

 is Poisson’s ratio, S is the virtual mass coefficient, and pf  is 

the linear friction factor.  The form of Eqs. (3) and (4) is the 
same as that proposed by Lan and Lee (2010).  In addition, 
note that the relative velocity 


Q   included the static pore pres-

sure can be written as:  
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where * i j  
  
d   is the elastic solid displacement.  The 

derivations of Eqs. (3) and (4) are presented in the Appendix 
A.  Compared to the theory of Lan and Lee (2010), the vertical 

component of relative velocity in Eq. (8) increases the gradient 
term of hydrostatic pressure (wg).  Eq. (8) can further extend 
the relevant derivation of the free surface of gravity waves in 
poroelastic medium.  Therefore, the present theory is more 
suitable for the application of emergent poroelastic medium.  

The linear friction factor pf  is the average effect of the total 

frictional resistance in the poroelastic medium.  For the Darcy-
Forchheimer flow configuration, pf  can be defined as 
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where  is the kinematic viscosity of the fluid, kp is the intrinsic 
permeability, Cf is the turbulent drag coefficient, and  is the 
volume of the poroelastic medium.  If the fluid frictional re-
sistance in the poroelastic medium satisfies Darcyʼs law, the 
linear friction coefficient can be simplified to 
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2. Governing Equations for Water Waves 

The fluid domain is divided into regions I and II.  The ve-
locity potentials satisfy the Laplace equation given by: 

 
2 0, ,j j I II     (11) 

where 
i r

I    is the velocity potential in region I and 
r  is the reflected velocity potential.  The velocity vector re-

lated to the potential function is determined by ( )w j j 

q . 

3. Boundary Conditions 

The bottom boundary and the matching boundary condi-
tions between any adjoining regions must ensure the continuity 
of the fluid pressure and continuity of normal flow flux.  In 
addition, the normal effective stresses and shear stress on the 
surfaces of the poro-elastic medium region are equal to zero.  
As the top of the poro-elastomer exposes the water surface, 
this study deals with a free surface boundary condition in the 
context of a poroelastic medium, which has rarely been con-
sidered in previous studies.  Under linear wave theory, the 
wave elevation on the free surface boundary v  satisfies: 

 ,v
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where Qz is the vertical component of relative velocity in the  
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Fig. 2. Definition of homogeneous boundary value problem considered in this study. 

 
 
poroelastic system.  As for the dynamic free surface boundary 
condition in the field of a poroelastic medium, the hydrody-
namic pressure P at z = d is equal to the dynamic pressure of 
the surface elevation ( w vg  ), i.e., 

 ,w vP g z d    (13) 

The form of other boundary conditions is similar to that de-
rived by Lan and Lee (2010).  The linearized free surface 
boundary condition can be written as: 
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The bottom boundary conditions match the non-slip condition:  
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The boundary conditions on the surface of the poroelastic me-
dium are given by: 
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where 'x , 'z , 'x z , and 'zx  are the effective stresses of 
the poroelastic medium.  The matching boundary conditions 
between any two adjoining regions ensure the continuity of 
both the pore pressure and normal flow flux, and are written 
as: 
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4. Formulation of the Homogeneous Boundary Value 
Problem 

Based on the linear assumption, the physical properties in 
region PE are divided into two parts, i.e., a bP P P   , 

a b     , a b     , a b
x x xQ Q Q   , a b

z z zQ Q Q   , 

and so on.  Fig. 2 illustrates the separate regions of the bound-
ary value problem, their corresponding governing equations, 
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and the matching boundary conditions.  Using the superscripts 
a and b, the boundary value problem can be modified by sep-
arating region PE into subregions PE–a and PE–b.  Region PE–
a satisfies the vertical homogeneous boundary conditions 

( ' 0, 0a
zn Q z    and    2 ,a a

pP g S if P z z d        ), 

whereas region PE–b obeys the horizontal homogeneous 

boundary conditions ( ' 0, 2b
xn Q x b    ).  Following this 

formulation, the homogeneous boundary value problem for 
waves propagating over a poroelastic medium can be solved 
analytically.  

III. METHOD OF SOLUTION 

The velocity potentials r  and II  satisfying the Laplace 
equations, and the free surface and bottom conditions can be 
obtained formally by the following eigenfunction expansions:  
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where 0 0ik   .  The eigenvalues n  are determined by the 
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servation of wave energy, given by 

2 21 ( )f r tE K K    .  
0fE   indicates wave damping in the poroelastic medium. 

The solution of the system in region PE is obtained by sep-
arating the variables.  The general solutions of the displace-
ment components and pore pressure, satisfying the homogene-
ous matching boundary conditions, are given by: 
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where the eigenvalues ˆa
n  are determined by the dispersion re-

lation as: 
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where 

 ˆ , 0,1, 2,b
n n b n     (30) 
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Fig. 3. Reflection and transmission coefficients versus the number of adopted wave modes. 
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The 14 quantities ( )n IC , ( )n IIC , 1
a
nA – 6

a
nA , and 1

b
nA –

b

nA6  

are unknowns that must be determined by power series ap-
proximations.  Note that Eqs (13), (16)-(20) form a linear sys-
tem of 14 equations.  These unknowns can be obtained using 
the remaining matching boundary conditions together with the 

orthogonal eigenvalues n , ˆa
n , and ˆb

n .  The detailed matrix 

equations are presented in the Appendix B. 

IV. VERIFICATION 

The present wave theory includes evanescent wave series 
for which the number of modes used in the computation must 
be determined.  Fig. 3 demonstrates the computed reflection 
and transmission coefficients with respect to the number of 
modes used in the theory.  The conditions used in the compu-
tations are k0d  2, /5, /15, Hi/d  0.01, b/d  1, h/d = 
1.0285, n'  0.439, Cf  0.295, S  1.015,   0.333, s 2650 
kg/m3, w1000 kg/m3, v  1.12106 m2/s, 4.351010 
m2/N, G  1105 N/m2, with kp  1.0572109 m2 to simulate 
low permeability and kp  1.0572107 m2 to model higher per-
meability.  The calculation conditions cover deep water waves 

(k0d  2), intermediate water waves (k0d /5), and shallow 
water waves (k0d /15), as well as different permeabilities 
(kp).  The results show that, with approximately 30 modes, the 
wave reflection and transmission coefficients converge in all 
six cases. 

The present theory is being used to approximate the prob-
lem of waves passing over an impermeable and rigid structure.  
Small values of the porosity (n'  1107), intrinsic permeabil-
ity (kp  0, i.e., fp  0), turbulent drag coefficient (Cf  0), unit 
virtual mass coefficient (S  1), and rigid-type shear modulus 
(G  1.1251010 N/m2) are used in the calculations.  Fig. 4 
shows the reflection coefficient Kr and transmission coeffi-
cient Kt with respect to k0d, where b/d  1 and h/d  1.0285.  
The comparisons show that the present theory matches the an-
alytic solutions (Kr  1 and Kt  0) very well. 

For the case of a porous and rigid breakwater, the experi-
mental results reported by Sollitt and Cross (1972) are used 
for comparison.  In their experiments, the water depth d  
0.3048 m, the incident wave height remains within 0.008 < 
Hi/L0< 0.012 (L0 is the incident wave length), nd the coeffi-
cient k0d  0.5 2.5.  For a permeable breakwater, the poros-
ity n'  0.439, the intrinsic permeability kp  1.0572107 m2, 
and the turbulent drag coefficient Cf  0.295.  The other con-
ditions used in the computations are b/d  1, h/d  1.0285, S 
 1.015,   0.333, s 2650 kg/m3, w1000 kg/m3, v  
1.12106 m2/s, 4.351010 m2/N, and G  1.1251010 
N/m2.  The experimental model of Sollitt and Cross (1972) 
has high permeability with turbulent resistance, so Darcy-
Forchheimer flow configuration is used to this calculation.  
The wave reflection and transmission coefficients with respect 
to k0d are compared in Fig. 5.  The results of Sollitt and Cross 
(1972) are also plotted.  This comparison shows that the pre-
sent theory is in good agreement with experimental data.  
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Fig. 4. Reflection coefficient Kr and transmission coefficient Kt versus k0d 

for a rigid and impermeable breakwater (b/d = 1, h/d = 1.0285). 

 
 

 
Fig. 5. Comparison of the present theory with the solution and experi-

mental data of Sollitt and Cross (1972) for the case of a wave pass-
ing over a single permeable breakwater. 

V. COMPUTATIONAL RESULTS 

In this section, the effects of the flexibility and permeability 
of the poroelastic medium on wave transformation (e.g., wave 
reflection, transmission, and energy dissipation) are studied in 
detail.  The physical conditions of the poroelastic media and 
water waves used for the computations are listed in Table 1, 
where Case A examines the effect of elasticity and Case B 
studies permeability.  The frictional resistance in porous elastic 
media is taken into account the type of Darcy-Forchheimer 
flow configuration.  

The key parameters in Table 1 (G, n' and kp) basically are 
chosen according to the experiment study of Lan (2000) and 
Lan et al. (2011) for soft materials, and Sollitt and Cross  
(1972) for rigid structures.  For model applications, the soft 
materials of the sea-grass vegetation, sponges and polymer 
foams can be used in the practical design.  The change of the  

Table 1. Physical properties of poroelastic media and wa-
ter waves. 

Properties Case A Case B 

b/d 
1.0 
0.5 

1.0 
0.5 

h/d  1.0285 1.0285 
n' 0.439 0.439 
 0.333 0.333 

Hi/L0 0.01 0.01 

G(N/m2) 

1  108 

1  106 
1  105 
5  104 
1  104 

1  108 
1  104 

v(m2/s) 1.12  106 1.12  106 
(m2/N) 4.35  1010 4.35  1010 

Cf 0.295 0.295 

S  1.015 1.015 
s

(kg/m3) 2650 2650 
w

(kg/m3) 1000 1000 

kp(m2) 5.2860  109 
1.0572  107 
1.0572  108 

5.2860  109 

 
 

shear modulus G represents the soft or hard and rigid material, 
for example, G = 104  105 N/m2 is for the case of sponges and  
polymer foams (Lan, 2000; Lan et al., 2011), G = 105  106 
N/m2 is for the case of rubbers and G  108 N/m2 is for hard 
and rigid materials (Gere and Timoshenko, 1984).  In addition, 
the permeability coefficient kp is generally between 107 m2 
(high permeability) and 109 m2 (low permeability) when the 
porosity n' is around 0.4 (Sollitt and Cross, 1972; Hsu et al., 
1993).  To examine the effect of shear modulus and permeabil-
ity, numerical parameters are set to have the same values for 
comparison. 

1. Effect of Shear Modulus of the Poroelastic Medium 

Figs. 6 and 7 show the reflection coefficient Kr, transmis-
sion coefficient Kt, and wave energy dissipation Ef versus k0d 
for five materials with shear moduli of G  1  108, 1  106,  
1  105, 5  104, 1  104 N/m2 and material permeability kp  
5.286  109 m2.  The dimensionless width b/d is 1.0 and 0.5 
in Figs. 6 and 7, respectively.  The results of Fig. 6 show that 
when G is greater than 106 N/m2, the effect of material elastic-
ity on the waves is negligible.  The wave reflection and trans-
mission approach that of a rigid permeable structure con-
stricted from stiff materials.  For smaller value of the shear 
modulus (G < 106 N/m2), the effect of elasticity on wave trans-
formation is obvious.  As G decreases, the reflection coeffi-
cient Kr decreases and the transmission coefficient Kt increase.  
These results are caused by the motions of the elastic solid  
and pore fluid, with frictional resistance induced to dissipate 
the internal energy.  The reflection coefficient, transmission  
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Fig. 6. Kr, Kt, and Ef versus k0d for varying shear modulus G (b/d = 1.0,  

kp = 5.286  109 m2, Darcy-Forchheimer flow configuration). 

 
 

 
Fig. 7. Kr, Kt, and Ef versus k0d for varying shear modulus G (b/d = 0.5,  

kp = 5.286  109 m2, Darcy-Forchheimer flow configuration). 

coefficient and wave energy variation with k0d are related to 
the phase lag between wave motion and medium deformation 
(Lan and Lee, 2010).  Fig. 7 illustrates that the smaller medium 
width, the greater the flexural deformation induced by wave 
force, and the more obvious change in wave reflection, trans-
mission and energy dissipation.  As G is smaller, the extreme 
values of Kr and Kt are basically shifted to smaller k0d. 

2. Effect of Permeability of the Poroelastic Medium 

The effects of the permeability of the emergent poroelastic 
medium on wave reflection Kr, transmission Kt, and energy 
dissipation Ef are studied in the section.  Figs. 8 and 9 show Kr, 
Kt, and Ef versus k0d for kp  5.286  109  1.0572  107 m2.  
For stiff media (G = 1  108 N/m2), the effects of permeability 
on waves are similar to the case of rigid and porous media (Lan 
and Lee, 2010).  The results show that the wave reflection Kr 
and transmission Kt decrease with increasing k0d, and the en-
ergy dissipation Ef increases with the increase of k0d.  With an 
increase in medium permeability kp, the wave reflection coef-
ficient Kr diminishes and the wave transmission Kt increases.  
Higher permeability induces higher frictional resistance inside 
the stiff poroelastic medium, which induces higher energy dis-
sipation. 

For soft structures (G  1  104 N/m2), Figs. 10 and 11 show 
that resonance occurs respectively at k0d  1.81 and 1.03 for 
the impermeable case.  The phenomenon of quasi-resonance 
appears in the interval 1.0 < k0d < 4.0 for permeable cases.  
The phase lag of the medium vibration and wave oscilla-
tion is the cause of the minimum Kr and maximum Kt at 
a particular value of k0d.  The extreme values of reflection 
and transmission coefficients shift to the large k0d value as the 
intrinsic permeability kp increases.  This quasi-resonance is 
caused by the composite effects of medium deformation and 
frictional damping induced by the seepage velocity of the in-
teractive mechanism between waves and the poroelastic me-
dium.   

3. Effect of Frictional Resistance Type of the Poroelastic 
Medium 

Figs. 12 and 13 show the wave reflection Kr, transmission 
Kt, and energy dissipation Ef versus k0d for the intrinsic perme-
ability kp from 5.286  109 to 1.0572  107 m2 with Darcy 
friction resistance.  It is well known that the porous friction 
properties of various materials affect the variatins of wave 
scattering and dissipation.  Comparisons of Figs. 8 and 12 and 
Figs. 10 and 13 illustrate different types of frictional resistance 
in poroelastic media have obvious variability to the effects of 
wave reflection, transmission and wave damping.  This means 
that in practical applications, the friction characteristics of per-
meable material need to be calibrated in advance to determine 
which friction resistance flow configuration. 

VI. CONCLUSION 

This paper has presented an analytical solution for waves  
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Fig. 8. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d = 1.0, G = 1  108 N/m2, Darcy-Forchheimer flow configu-
ration). 

 
 

 
Fig. 9. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d = 0.5, G = 1  108 N/m2, Darcy-Forchheimer flow configu-
ration). 

 
Fig. 10. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d  1.0, G  1  104 N/m2, Darcy-Forchheimer flow configu-
ration). 

 
 

 
Fig. 11. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d  0.5, G  1  104 N/m2, Darcy-Forchheimer flow configu-
ration). 
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Fig. 12. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d  1.0, G  1  108 N/m2, Darcy flow configuration). 

 
 

 
Fig. 13. Kr, Kt, and Ef versus k0d for varying intrinsic permeability  

kp (b/d  1.0, G  1  104 N/m2, Darcy flow configuration). 

propagating over an emergent poroelastic medium.  An im-
proved poroelastic theory has been developed based on Lan-
Lee’s poro-elastomer theory and consideration of the static 
pore pressure.  The interactions between waves and the poroe-
lastic medium were considered through the continuity of the 
flow flux and pressure on the interfacial boundaries.  Free sur-
face boundary conditions in the field of poroelastic media were 
also proposed.  Numerical results compare well with simpli-
fied cases of impermeable and rigid structures, as well as ex-
perimental results for porous structures (Sollitt and Cross, 
1972).  On the basis of the results from this study, the follow-
ing major conclusions can be drawn.   

 
1. The shear modulus of the emergent poroelastic medium is a 

key factor affecting wave transformation in the region  
G < 106 2N m . 

2. Resonance phenomena induced by structural vibration and 
wave oscillation can occur on softer and almost impermea-
ble structures.  Higher permeability induces significant 
wave damping and reduces the resonance through interac-
tion between the waves and the poroelastic medium.   

3. Different frictional resistance models of poroelastic me-
dium have high variability of effect on the wave scattering.   
 
The present conclusions provide considerations for the de-

sign of wave-prevention structures for different materials.  We 
can change the permeability of rigid structures to increase the 
attenuation of wave energy and reduce wave reflection and 
transmission, thus achieving superior wave-defense effects.  
When using flexible materials, we need to prevent quasi-reso-
nance from occurring in the period range of frequent waves at 
the defensive site; if this is unavoidable, the flexible structure 
could be designed to have a poro-flexible configuration with 
permeable properties to suppress resonance.  The present the-
ory and solution provide a theoretical and general way to in-
vestigate wave transformation problems over any material 
structures. 

The experimental verification results of the submerged  
poroelastic medium have proved the rationality of Lan-Leeʼs 
poro-elastomer theory (Lan, 2000; Lan et al., 2011).  However, 
there are relatively few studies on the numerical results and 
experimental data to the verification of the present analytic  
solution for this paper.  It is necessary to focus on the issue by 
more researches of relevant experiments, field observations 
and numerical simulations.  The mutual verification between 
the subsequent researches and the analytical solution of this 
paper could expand the breadth of investigation on this topic.  
For the subsequent research of the interaction between waves 
and floating poroelastic media, the freedom of motion of the 
floating bodies and the water surface variation in the floating 
media increase the complexity of the analysis.  The free sur-
face boundary condition of emergent poroelastic media  
proposed in this paper can provide a solution to deal with the 
free surface boundary.  Future researches will investigate  
applications to actual analysis of waves passing over emergent 
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vegetation and the development of wave absorbers for ocean 
engineering and marine biology.  In addition, nonlinear effect 
of waves is one of an important research topics for the interac-
tion between waves and poroelastic media. 
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APPENDIX A 

Extended Lan-Lee’s poro-elastomer theory (Lan and Lee, 2010) for consideration of static pore pressure ( ( )wg z d  ), the 
conservation of mass and the conservation of momentum for the wave field are satisfied: 
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where ( , )x z       is the gradient operator, 


Q  is the fluid velocity relative to the elastic solid, and *  is the effective stress 
tensor of poroelastic media.  

The right-hand sides of Eqs. (35) and (36) include two force components.  The first and second terms represent the inertia 
force, whereas the third and last terms represent the Darcy-Forchheimer resistance force.  The Darcy-Forchheimer flow config-
uration and Lorentz’s hypothesis have been applied to deal with the turbulent resistance force and linearize the governing equa-
tions, respectively (Lan and Lee, 2010).  The linear friction factor fp, which is the average effect of the total frictional resistance 
in the poroelastic medium, can be defined as  
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Substituting the linearized relationship into Eqs. (35) and (36), the coupled momentum equations for the poroelastic medium can 
be simplified as: 
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The relationship between the effective stresses and strains in the poroelastic medium is governed by Hooke’s law:  
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Eqs. (34), (38), (39), and (40) can be decoupled into three partial differential equations (PDEs) in , , and P as Eqs. (3) and (4).  
In addition, note that Eq. (39) is used to obtain 


Q  after, , and P have been determined as Eq. (15).  

APPENDIX B 

Substituting the solutions expressed by Eqs (21)-(25) and (27)-(29) into the corresponding matching boundary conditions in 
Eqs. (13) and (16)-(20), and applying their orthogonality, the following equations are obtained:  
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In the computations, if N + 1 wave components are adopted, a total of 14(N+1) equations are obtained from Eqs. (41)-(55).  
As there are also 14(N + 1) unknowns, Cn(I), Cn(II), 1 6

a a
n nA A , and 1 6

b b
n nA A ( 0 1 2 ,n , , , N  ), in these extended equations, 

( )n IC , ( )n IIC , 1 6
a a
n nA A , and 1 6

b b
n nA A can be determined.  
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