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ABSTRACT 

A rubber rail-pad is typically inserted between the rail and 
the sleeper to attenuate wheel/rail vibrations for conventional 
train-rail-bridge (TRB) system.  For mathematical modeling, a 
rail-fastener with rubber pad is simplified as a spring-dashpot 
unit, whose spring stiffness is related to the exciting frequency of 
external loads.  To exhibit such characteristics of rail-pads on 
TRB dynamics, based on dynamic flexibility method, two com- 
putational models of constant/frequency-dependent stiffness (FDS) 
are considered for comparison.  Numerical studies reveal that 
the FDS model provides a strengthening benefit for the wheel- 
rail vibration, from which the shifted dominant frequencies in 
spectral response are observed. 

I. INTRODUCTION 

Express intercity transport plays a key role to raise economic 
development of modern cities in China.  However, the vibration 
and noise radiation caused by a train moving on bridges may re- 
sult in significant environmental impacts along railway lines 
(Crockett and Pyke, 2000; Schulte-Werning et al., 2006; Xu and 
Wu, 2012).  To reduce such environmental vibration problems, 
inserting rubber rail-pads between the sleeper and the rail, as 
shown in Fig. 1, is a typical method for ballasted/non-ballasted 
tracks, in which the fastener and the rubber rail-pad constitute 
a rail-fastening unit, as shown in Figs. 1(b) and 1(c).  According 
to previous studies (Fenander, 1997; Thompson and Verheij, 1997; 
Maes and Guillaume, 2006), the fastening stiffness of rail- 

(a) non-ballasted slab track

(b) rail fastening device

(c) rail-pad with rubber material  
Fig. 1.  Photos of rail-pads and fasteners resting on slab-track. 

 

 
fasteners depends upon the dynamic properties of the rail-pads.  
Considering the frequency-dependent characteristics of dyna- 
mic stiffness for the rail-fasteners, Wang and co-workers (Wang 
et al., 2015; 2016a, b) carried out a series of experimental and 
numerical researches on dynamic interaction of wheel-rail sys- 
tem.  They integrated the symplectic method and the pseudo- 
excitation method (2017a; 2017b) to study the random vibration 
of vehicle-rail and vehicle-rail-tunnel coupling systems, respec- 
tively.  Combining the vehicle-track coupled dynamics with acoustic 
propagation theory, Yin et al. (Yin et al., 2017) conducted the 
wheel-rail noise radiation analysis for a train-rail system, for  
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(a) planar TRB coupling system  
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Fig. 2.  Schematic model of a train-rail-bridge system. 

 
 

which the frequency-dependent stiffness of rail-pads was ac- 
counted.  However, in most of these studies, the frequency- 
dependent properties of dynamic stiffness in a rail-fastening 
unit were not completely taken into consideration in response 
analysis of a train-rail-bridge (TRB) coupling system for ur- 
ban metro system.  Since the dynamic interaction analysis of 
a TRB system is related to complicated computational proce-
dures in dealing with coupled system dynamics using conven- 
tional dynamic stiffness methods.  Hence, this study proposed 
an alternative of dynamic flexibility method to investigate the 
dynamic response of the TRB system, in which the nature of 
frequency-dependent stiffness of rail-fasteners is accounted 
for spectral response analysis.  The present results indicated 
that the dominant frequency of spectral acceleration response in 
wheel-rail contact of the TRB system would be shifted to higher 
ones once the dynamic characteristics of frequency-dependent 
stiffness of the rubber rail-pads are taken into account in per- 
forming TRB coupling analysis.  Such a strengthening benefit 
can be used to mitigate the intensive vibration between the wheel- 
rail and slab-track system through the viscous nature of rubber 
rail-pads. 

II. DYNAMIC FLEXIBILITY  
OF THE TRB SYSTEM 

In this paper, the dynamic model of TRB system is employed 
to simulate the train-induced vibration of viaducts in urban- 
metro system.  As shown in Fig. 2, a multi-body coach with 
primary and secondary suspension systems is modeled as a 
rigid car-body supported by two bogies with four wheel-sets, 
the rail is regarded as a Timoshenko beam resting on bridge deck 
and the bridge as a simply supported Bernoulli-Euler beam, in 
which the discrete rail-pad/fastener units fastening the rails on 
concrete slabs are simplified as a series of spring-dashpot units 
with equal intervals (see Fig. 2(a)).  Moreover, the equivalent 
linear Hertzian contact theory is adopted to describe the con- 
tact relation between the moving wheel and the stationary rail 

(Lei, 2015) because of low operating speeds in urban metro 
system.  For conventional structural dynamic analysis, dis-
placement-based stiffness method is a popular approach to for- 
mulate the structural matrices by finite element (FE) modeling 
for response analysis.  However, the dynamic stiffness method 
may encounter a difficulty in accurately predicting higher mode 
frequencies () since the structural stiffness proportionally in- 
creases with 2 of a dynamic system.  In contrast, the force- 
based flexibility method has relative robustness to affect the high 
mode frequencies of a structure because it rapidly decreases with 
1/2 (Gao and Spencer, 2002).  Hence, this study adopted the 
dynamic flexibility method for coupled dynamic analysis of a 
TRB system.  First, the whole TRB system is divided into two 
subsystems, i.e., the coach model and the rail-bridge system.  
Then the spectral response analysis of the TRB system with/ 
without considering frequency-dependent stiffness of the rubber 
rail pads is carried out to assess the vibration levels of the TRB’s 
components. 

1. Dynamic Flexibility Matrix of the Coach Model 

To predict the dynamic response of a vehicle moving on a 
bridge accurately, a number of complicated vehicle-bridge 
interaction (VBI) models based on FE method were proposed 
to assess the manipulation and riding comfort of a train moving 
on a bridge (Yang et al., 2004; Yau 2004; Wang et al., 2013; 
Lei 2015; Yau et al., 2016).  However, solving the coupled equa- 
tions of motion for a TRB system in temporal domain needs 
much CPU time in numerical computations.  To simplify the 
complicated computations, the entire TRB system is decom- 
posed into the coach and rail-bridge subsystems, connected by 
linear Hertz’s spring.  These two subsystems are first analyzed 
by dynamic flexibility method individually and then coupled 
through the enforcing conditions of force equilibrium and de- 
formation compatibility (Raghavan and Srikantha-Phani, 2015). 

Considering the planar coach model shown in Fig. 2, the sim- 
plified multi-body model is composed by one rigid car-body 
supported by two bogies with four wheel-sets, where the symbol 
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lc is denoted as the interval between two bogies and lt the 
length between two wheel-sets of a bogie.  The dynamic re- 
sponse {ZV(t)} of the coach can be described by the following 
matrix equation as: 

 
       ( ) ( ) ( ) ( )v V v V v VM z t C z t K z t p t               (1) 

where ([MV], [CV], [KV]) represent the mass, damping and stiff- 
ness matrices of the coach model, respectively, {ZV(t)} the dis- 
placement vector of the coach, {p(t)} the contact force vector 
between the wheel-sets and the rails, which are related to the 
track irregularities and beam deflections.  Thus one can trans- 
form the differential equations in temporal domain of Eq. (1) 
into the following spectral matrix equation 

     2 [ ] [ ] ( ) ( )v v V VM i C K Z p          (2) 

here,  is denoted as the exciting frequency due to random 
irregularity, {P()}the spectral amplitude vectors of the contact 
force and {ZV()} the vehicle’s response.  By solving the spec- 
tral displacement response of {ZV()} from Eq. (2), the flexi- 

bility coefficient  V
ij  of the i-th wheel-set of the railcar model 

moving at the j-th position on the rail can be obtained, from 
which the dynamic flexibility coefficient matrix is expressed as: 

 / , , 1, 2, 3, 4V V
ij ij jZ P i j        

V  (3) 

where V
ijZ  represents the displacement response of the i-th 

wheel-set moving on the j-th contact point of the rail, Pj the 
corresponding contact force of the wheel-set and V the cor-
responding dynamic flexibility matrix of the coach model. 

2. Dynamic Flexibility Matrix of the Rail-Bridge 
Sub-System 

As shown in Fig. 2, the rail-bridge subsystem is modeled as 
an infinitely long Timoshenko beam resting on the simply sup- 
ported beam connected by a series of rail-pad/fastener units with 
identical intervals, in which the rail-pad/fastener is modeled 
as an equivalent spring-dashpot unit and the elastic bearings 
supporting the beam structure at two ends on bridge piers are 
idealized as set of equivalent spring bearings.  Then the dyna- 
mic displacement at x1 of the Timoshenko beam subject to a 
harmonic load at x2 is given as (Thompson and Verheij, 1997) 

 1 1 2 2 1 2

1 2 1 2( , ) ik x x ik x x
r x x u e u e       (4) 

where r(x1, x2) represents the displacement at the point of x1 
caused by a unit harmonic load acting on the position x2 of the 
rail and the dynamic coefficients of (k1, k2) and the amplitudes 
of (u1, u2) are respectively given as follows: 
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Here, Er = elastic modulus, Gr = shear modulus, Ar = cross- 
sectional area, Ir = cross sectional moment of inertia,  = shear 
coefficient, r = density and r = loss factor of the rail, respec- 
tively. 

By using the dynamic flexibility method and the superpo-
sition principle, the spectral displacement response of the rail 
is expressed by Eq. (4) as (Dai et al., 2014) 

    
1 1

( , ) , ( ) , ( )
w rN N

r r k k r n fn
k n

z x x x P x x F    
 

    (8) 

where Pk is the wheel-rail contact force of the k-th wheel-set 
moving at the position xk on the rail, Nw the total number of 
wheel-sets, and Ffn the restoring force of the j-th rail-fastener 
at the position xn on the rail, and Nr is the total number of 
fasteners under the rail.  Similarly, for a simply supported 
Bernoulli-Euler beam, the dynamic flexibility of the beam 
reads (Thompson and Verheij, 1997). 

      
 

2 2
2 1 2 2

1
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b
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
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 
 (10a, b) 

where Wbn is denoted as the n -th natural mode of a simple 
beam, bn the n-th modal frequency and NMB the total mode 
number for dynamic analysis of the beam.  In addition, the 
following symbols are used in Eqs. (9) and (10): Lb = span 
length, EbIb = flexural rigidity of the cross section and mb = mass 
per length of the beam.  Following a similar process, the spectral 
deflection (zb) of the beam can be described by Eq. (9) as 

2

1 1

( , ) ( , ) ( ) ( , ) ( )
N

b b n fn b zk zk
n k

z x x x F x x F    
 

    (12) 

where Fzk is denoted as the support reaction of the k-th pad- 
bearing at the position of xzk on the bridge.  With the displace- 
ment components of the rail and beam in Eqs. (8) and (12), 
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respectively, the internal force (Ffn) in the rail-fastening unit 
and the support reaction (Fzk) at the supported bearings of the 
bridge are expressed as: 

       ,fn f r n b n zk z b kF K z x z x F K z x    (13a, b) 

here, Kf
 
is denoted as the complex stiffness of the rail-fastener 

with a loss factor of f and Kz as the complex stiffness of the 
supported spring with a loss factor of z, both of which are 
respectively expressed in complex form as: 

 (1 ), (1 )f f f z z zK k i K k i      (14a, b) 

Let us adopt the relation of force-deformation for a rail- 
bridge system.  The substitution of Eq. (13) into Eqs. (8) and (12), 
respectively, yields the following simultaneous equations 
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 (15a, b) 

For simplified expression, Eqs. 15(a) and 15(b) can be written 
using the following matrix equation as: 

       K Z P  (16) 

where [K] represents the dynamic complex stiffness matrix, 
[Z] the response vector of the rail-bridge system and {P} the 
load vector.  Following the similar derivation process of dy- 
namic flexibility shown in Eq. (3), the solution of Eq. (16) yields 
the dynamic flexibility matrix of the rail-bridge system, that is, 

 
4 4

/ , , 1, 2, 3, 4TB TB
ij ij jZ P i j


        

TB  (17) 

here, TB
ij  represents the spectral displacement response of the 

rail at the i-th contact point with the contact force Pj moving 

on the j-th position of the rail, TB
ij  the corresponding dynamic 

flexibility coefficient and TB  the 4  4 dynamic flexibility ma- 

trix of the rail-bridge system. 

3. Dynamic Flexibility of the Linear Hertzian spring 

The nonlinear contact stiffness of wheel-rail sysem is related 
to not only the wheel/rail contact force but also the shape of the 
wheel and rail-tread (Lei, 2015).  As a wheel is rolling on a 
straight track, the nonlinear Hertzian contact relation between 
two cylinders (Zhai, 2015; Wei et al., 2016c) is adopted to de- 
scribe the vertical contact between the wheel and the rail, that is, 

 2 / 3y Gp  (18) 

where y is the relative displacement between the wheel and the 
rail in contact, p the wheel-rail contact force and G the inter- 
ference coefficient.  Depending on the thread types of the roll- 
ing wheel on the rail, the interference coefficient G is given by: 

 For a tapered tread: 0.149 84.57 10G R    (19a) 

 For a wear-type tread: 0.115 83.86 10G R    (19b) 

here, R represents the radius of the wheel.  To formulate the equi- 
valent stiffness of Hertzian spring between the wheel and rail, 
the equation of Eq. (18) can be rewritten as 

 3/ 2 3/ 2
3/ 2

1
p y Cy

G
   (20) 

where C = 1/G3/2 is called the contact stiffness of equivalent 
spring between the wheel and rail.  In this study, the wheel- 
rail contact spring is assumed as an equivalently linearized 
Hertzian spring.  Thus one can approximate the linear stiffness 
of the nonlinear Hertzian spring as: 

 
0

1/ 3
0

3

2c

p p

dp
k p

dy G

   (21) 

where kc is called the linearized wheel-rail contact stiffness and 
p0 the static axle-load acting on the rail.  Then the dynamic 
flexibility matrix (c) of the wheel-rail contact springs for a coach 
with four axle-loads can be directly formulated using the in- 
verse relation of Eq. (21) as: 

 

1/

1/

1/

1/

c

c

c

c

k

k

k

k

 
 
 
 
 
 
  

c  (22) 

4. Response Analysis of the TRB System 

Due to the regular axle-arrangement of wheel-sets in the two 
bogies of a coach, as shown in Fig. 2(a), the rail irregularity 
under the i-th moving wheel on the rail can be expressed in term 
of the sequential arriving-time of the wheel in contact with the 
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rail.  Thus, the rail irregularity functions beneath the four wheel- 
sets can be expressed in a vector form as 

  1 1 1 2 1 3 1 4( ) ( ) ( ) ( ) ( )
T

t r t t r t t r t t r t t    r  (23) 

here, the irregularity function 1 1~4
( )i i

r t t


  represents the irre- 

gularity amplitude beneath the i-th wheel at the arriving-time 
ti.  Let us consider a typical metro-coach with four axle-loads 
moving at constant speed V, if the initial time for the first wheel- 
set is set t1 = 0 then the arrival times of the following three 
wheel-sets are given: t2 = 2lt/V, t3 = 2lc/V and t4 = 2(lt  lc)/V, 
respectively.  Here the intervals of lt and lc have been shown 
on Fig. 2(a). 

By the fast Fourier transform (FFT), the vector form of ex- 
citing sources induced by irregularities to the TRB system, as 
shown in Eq. (23) can be expressed in frequency domain as: 

 2 / 2 / 2 ( ) /
1( ) 1 ( )t c t c

Ti l V i l V i l l Ve e e r      R   (24) 

here, r1() represents the transformed function of the rail ir- 
regularity r(t) after FFT.  Since the running speed of a train is 
much smaller than the phase speed of elastic waves propagat-
ing in steel rail, the use of track irregularity as an exciting source 
to a moving train is acceptable for train dynamics.  By using the 
force-equilibrium relation to relate the dynamic flexibility matrices 
of (V, TB, c) in Eqs. (3), (7) and (17) with the excitation vector 
of Eq. (24) for the TRB system, one can obtain the dynamic 
wheel-rail force vector Pwr from the displacement equations as 
R() = (V  TB  c)Pwr or 

 -1 = ( + + ) ( )V TB c
wrP R     (25) 

By substituting the wheel-rail force vector Pwr of Eq. (25) into 
Eqs. (4) and (16), respectively, the spectral responses of the 
car body ({ZV()}) and rail-bridge system ([Z]) are obtained.  
Then the spectral responses of ({ZV()}, [Z]) can be used to 
evaluate the dynamic performance of the FDS model on vibra- 
tion analysis of the TRB system. 

III. FREQUENCY-DEPENDENT STIFFNESS  
OF THE RAIL-FASTENING SYSTEM 

To investigate the dynamic characteristics of frequency- 
dependent stiffness of the rail-fastener described in Section 2, 
the metro-coach A and the channel bridge with non-ballasted 
tracks (see Fig. 2(b)) in the Nanchang Metro are considered.  
Tables 1 and 2 listed the properties of the metro-coach A and 
the channel bridge, respectively.  The fundamental frequency 
of the channel bridge with supported bearings is 6.6 Hz, which 
approximates the following simplified formula proposed by 
Yang et al. (2004). 

Table 1.  Properties of the metro-coach A (Wei et al., 2016b). 

Parameter Value

Car-body mass (t) 46 

Bogie mass (t) 4.36 

Wheel-set mass (t) 1.77 

Pitching moment of inertia of the car-body (t  m2) 1959 

Pitching moment of inertia of the bogie (t  m2) 1.47 

Primary suspension stiffness (kN  m-1) 2976 

Primary suspension damping s (kN  m-1) 15 

Secondary suspension stiffness (kN  m-1) 1060 

Secondary suspension damping s (kN  m-1) 30 

Vehicle length (m) 22.8 

Length between bogie centers (m) 15.625

Rigid wheel base (m) 2.5 

 
 

Table 2.  Properties of the rail-bridge system (Li et al., 2012). 

Parts Item Value 

Elastic modulus (N/m2) 2.1e10
Cross-sectional moment  

of inertia (N/m2) 
3.217e-5

Density (kg/m3) 7850 

Cross-sectional area (m2) 7.745e-3

Shear modulus (N/m2) 7.7e10

Sectional factor 0.5331

Rail 

Loss factor 0.01 

Spacing (m) 0.625 
Fastener 

Loss factor 0.25 

Length (m) 30 

Elastic modulus (N/m2) 3.55e10

Sectional moment of inertia (m4) 6.859 

Density (kg/m3) 2600 

Sectional area (m2) 2.205 

Bridge 

Loss factor 0.05 

Stiffness (N/m) 2e8 

Support spacing (m) 30 Support Bearing

Loss factor 0.25 
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where (EI, L, m) = flexural rigidity, length, and mass/length 
of the beam, and Kb = supporting stiffness of the bearing. 

In this study, the track irregularity graphically plotted in 
the Chinese High Speed Rail Standard of (GB/T5111-2011, 
2011) is adopted and the corresponding irregularity spectrum 
is fitted using the following linear logarithm function as: 
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 (27) 

here, r = central wavelength with amplitude smaller than 0.63 
m, r0 = reference amplitude of rail roughness (= 10-6 m),  = 
wavelength of one-third frequency interval and  = exciting 
frequency. 

As a railcar is running on a bridge, the dynamic stiffness of 
rail-fasteners may change with the exciting frequencies of the 
wheel-rail system due to the nonlinear stiffness properties of 
the rubber pads made of Thermoplastic Polyurethane Elastomer 
(Wei et al., 2016c).  From the in-situ experiments in previous 
literature (Wei et al., 2015; 2016a-c; Liu et al., 2017), the cur- 
rent dynamic stiffness (K) of the rail-fastener and the exciting 
frequency (f) can be approximated by a linear logarithmic re- 
lation as: 

 0 0log( ) (log( ) log( )) log( )K k f f K     (28) 

where K0 is the initial stiffness of the rail-pad under low fre- 
quency, f0 the exciting frequency (normally 3-5 Hz) of the wheel- 
rail system, f the exciting frequency, and k the linear tangential 
slope of the dynamic stiffness of the rail-fastener to the excita- 
tion frequencies of external forces in logarithmic coordinate 
system.  In practice, the linear tangential slope of k is ranged 
from 0.05 to 0.3 (Maes et al., 2006; Wei et al., 2016c).  Here, 
the positive slope parameter (k) represents the dynamic stiff- 
ness of the fastener/rail-pad system rising with the increase of 
exciting frequency of external loads.  Let us observe the linear 
logarithmic equation of Eq. (28), the frequency-dependent stiff- 
ness of rail-pads is not only related to the initial stiffness K0 in 
low-frequency but also proportional to the amplitude of the slope 
parameter k, in which the higher the exciting frequency (f) to 
the rail-fastener, the more fastening of the connecting stiffness 
(K) on the rail-fastening unit will be developed.  Such a material 
property provides a strengthening benefit in frequency-dependent 
stiffness for the rail-fastener to mitigate the intensive vibration 
between the wheel-rail and the slab-track system in conjunction 
with the viscous properties of rubber rail-pads.  Based on the 
practical consideration of metro system, the following data are 
adopted in this study: the exciting frequency f0 is set 4 Hz and 
the initial stiffness of the rail-fastener K0 = 40 kN/mm, and the 
slope parameter k (= 0.1306) is referred to as the experimental 
parameters suggested by Maes et al. (2006). 

IV. NUMERICAL ILLUSTRATIONS  

A convenient way to understand the dynamic behaviors of 
a structure under external excitations is to obtain its spectral 
response in frequency domian, from which one can identify 
the dominant frequency and vibration information of the struc- 
ture.  To evaluate the vibration levels of the TRB system, the  
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Fig. 3.  Vertical acceleration spectrum of the car-body. 

 

 
frequency distribution of structural response is divided into three 
levels, i.e., the frequency-band in 1~10 Hz is defined as “low 
frequency”, 10~60 Hz as “medium frequency” and 60~200 Hz 
as “high frequency” (Wei et al., 2016a; 2016b). 

Since the influence of frequency-dependent stiffness of rail- 
fasteners on the spectral response of the TRB system is of con- 
cern, the case of one metro coach moving on a channel-bridge 
with constant speed of 80 km/h is considered in this study.  
Tables 1 and 2 list the properties of the coach and rail-bridge 
system in Nanchang Metro.  By the response analysis based on 
dynamic flexibility method described in Sections 2 and 3, the 
plots of vertical spectral acceleration response vs. frequency at 
midpoint of the car-body, wheel-set, bogie, and rail-bridge sys- 
tem have been shown in Figs 3-7, respectively.  For compa- 
risons, the initial constant stiffness (K0) of the rail-pad in the 
rail-fastener is regarded as a reference level to assess the spectral 
response of the TRB system considering nonlinear frequency- 
dependent stiffness of the rail-pad.  Moreover, two computational 
models of the rail-fastening system, i.e., the constant stiffness 
(CS) and the frequency-dependent stiffness (FDS), are con-
sidered for numerical investigations.  For convenient descrip- 
tion, they are denoted as “CS model” and “FDS model” in the 
following examples, respectively. 

1. Spectral Response of the Car-Body 

Fig. 3 shows the spectral acceleration response of the car 
body in low-frequency domain (1~20 Hz).  As can be seen, 
the two response curves, either of which considers the CS or 
the FDS model to simulate the rail-fastener, are identical and 
the first peak amplitude takes place at 1 Hz is consistent with 
the heaving frequency of the car body supported by secondary 
suspension systems (Wei et al., 2016a, b).  As for the second 
peak amplitude at 7 Hz, it represents the heaving frequency of 
the bogie to affect the response of the car body.  Next, let us 
observe the magnitudes of the two peak amplitudes at the fre- 
quencies of 1 Hz and 7 Hz on Fig. 3, respectively.  The results  
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Fig. 4.  Vertical acceleration spectrum of the bogies. 

 

 
indicated that the effects of FDS model on the spectral ac-
celeration of the car-body is negligible due to low-stiffness 
secondary suspension systems for keeping riding comfort of 
passengers in a moving metro car.  Hence, the smaller peak 
response in low frequency of the car body does not result in sig- 
nificant noise radiation and vibration near the surroundings 
along railway lines. 

2. Spectral Response of the Bogies 

In this example, the vertical acceleration response of the bogies 
supporting the car body is of interest.  From the plot of peak ac- 
celeration amplitude vs. frequency shown in Fig. 4, few points 
are observed: 

 
(a) The first dominant frequency still takes place at 7 Hz with 

identical peak amplitude for both of the CS and FDS models; 
(b) The second peak amplitudes in the two response curves 

represent the dominant frequencies caused by the wheel- 
rail in contact.  As indicated, the peak amplitude at 54 Hz 
of the CS model has been shifted to 61 Hz if the FDS mo- 
del is considered for the rail-fastener.  Such a stiffening 
phenomenon explains why the frequency-dependent stiff- 
ness of a rubber rail-pad should be accounted in high- 
frequency range (57-120 Hz) for vibration evaluation; 

(c) In the medium frequency band ranged from 24 Hz to 56 
Hz, the peak amplitudes obtained from the FDS model are 
generally less than those by the CS.  However, the differ- 
ence between them has an increasing trend as the frequency 
increases in Fig. 4, especially for the peak amplitude at the 
frequency of 54 Hz due to the wheel-rail contact.  Ob-
viously, the FDS model plays a strengthening role in the 
spectral response of the bogie at medium-frequency; 

(d) For the high frequency-band ranged from 57 Hz to 120 
Hz, the peak amplitudes of the CS model are less than those 
of the FDS from 56 Hz.  For example, there exists a signi- 
ficant difference of 35% at 61 Hz between them, as ex- 
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Fig. 5.  Vertical acceleration spectrum of the first wheel-set. 

 

 
 plained in Point (b). 

3. Spectral Response of the Wheel-Sets 

Fig. 5 shows the vertical spectral acceleration response of 
the first wheel-set.  Obviously, the response amplitudes plotted 
in Fig. 5 are significantly larger than the other results obtained 
from the coach and bridge system since the wheel-rail in con- 
tact is the major exciting source of vibration and noise of the 
whole TRB system.  According to the distribution of peak am- 
plitudes in spectral response curves shown in Fig. 5, four ob- 
servations are addressed: 

 
(a) The peak spectral acceleration responses of the wheel-set 

for both computational models are concentrated in the 
medium frequency-band (40~80 Hz); 

(b) The peak amplitude (= 4.087 m/s2) at the dominant fre-
quency of 54 Hz for the case of the CS model is signifi-
cant less than the one (= 5.147 m/s2) at the high frequency 
of 61 Hz of the FDS.  It means the frequency-dependent 
stiffness of rubber rail-pad in the rail-fastener should be 
taken into account in assessing the vibration and noise 
levels of wheel-sets; 

(c) For the frequencies less than 56 Hz in Fig. 5, the response 
amplitudes obtained from the FDS model are generally 
smaller than those from the CS.  It means that the FDS mo- 
del can produce a dissipating benefit to mitigate the response 
of the wheel-set below the medium frequency (56 Hz); 

(d) Compared to the results in Fig. 4, the response amplitudes 
at dominant frequencies are significantly less than those 
shown in Fig. 5.  The reason can be explained that the pri- 
mary suspension units between the bogie-body and the two 
wheel-sets can produce dissipating actions on vibration re- 
duction of the moving bogies. 

4. Spectral Response of the Rail 

Fig. 6 shows the plot of vertical spectral acceleration response  



 L. Liu et al.: Spectal Analysis of Train-Rail-Bridge System 121 

 

The constant stiffness of rail pads
The frequency-dependent stiffness of rail pads

61 Hz

7 Hz

54 Hz

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 20 8040 60

Frequency (Hz)

Ve
rti

ca
l a

cc
el

er
at

io
n 

of
 ra

il 
(m

/s
2 )

100 120

 
Fig. 6.  Vertical acceleration spectrum of the rail. 

 
 

of the rail.  Since the mass of the bridge is much larger than that 
of the rails, the rails fastened on the concrete slab of bridge 
deck would vibrate with the bridge.  Hence the first peak at 7 
Hz in Fig. 6 is consistent with the vertical modal frequency 
(6.6 Hz) of the bridge model.  For the case of CS model, the 
peak amplitude of 0.271 m/s2 occurs at dominant frequency 
54 Hz.  But for the FDS model, the dominant frequency has 
been shifted to 61 Hz with a higher amplitude of 0.325 m/s2.  
Thus, three points are comprehensively listed as follows: 

 
(a) For the frequencies smaller than 56 Hz, the peak amplitudes 

obtained from the FDS model are generally smaller than 
those by the CS.  It means that the FDS model play a dis- 
sipating role in mitigating the response of the first wheel- 
set in the medium-frequency below 56 Hz; 

(b) Once the frequency is larger than 56 Hz, the peak ampli- 
tudes obtained by the FDS model are generally larger than 
those by the CS, in which the dominant frequency has been 
shifted from 54 Hz to 61 Hz.  Such a phenomenon repre- 
sents that the frequency-dependent stiffness of the FDS 
model starts activating toward high frequencies; 

(c) For the FDS model, increasing dynamic stiffness of the rail- 
fastening system is helpful to raise energy-dissipating ca- 
pacity in vibration reduction of the wheel-rail system since 
the spectral response in high frequency can be efficiently 
suppressed by viscous damping of rubber rail-pads.  This 
benefit is useful for railway engineers to select a suitable 
rail-fastening system for vibration reduction of wheel-rail 
system. 

 
From the present numerical studies, we can conclude that the 

influence of the FDS model on the spectral accelerations of 
the car-body and bogie is negligible due to the low-stiffness sus- 
pension units.  But the spectral acceleration of the rail-wheel 
system is sensitive to the fastening stiffness of rail-fasteners at 
high frequency.  Thus the frequency-dependent characteristics  
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Fig. 7.  Vertical acceleration spectrum of the bridge. 

 
 

of dynamic stiffness for the rail-fastening system should be taken 
into account in assessing vibration levels of wheel-rail system. 

5. Spectral Response of the Bridge with Supported Bearings 

For the spectral response of the channel-bridge, as shown in 
Fig. 7, the present results are quite similar to those plotted in 
Fig. 6 for the rail even the peak amplitudes of the bridge re- 
sponse are slightly less than those of the rail.  As expected, the 
first peak at 7 Hz (or 6.6 Hz) represents the fundamental fre- 
quency of the channel bridge.  The reason is attributed to (1) 
the strong fastening effects between the rails and the concrete 
slab resting on the bridge deck; and (2) the viscous nature of 
supported bearings at bridge supports.  Thus the rails and the 
bridge appear a synchronous behavior in vibration. 

V. CONCLUSIONS 

In this study, the spectral response analysis of a TRB coupl- 
ing system was carried out using dynamic flexibility method, 
in which the dynamic characteristics of frequency-dependent 
stiffness in the rail fastening system are accounted for spectral 
response analysis of the wheel-rail system.  In addition to this, 
few points are concluded as follows: 

 
(1) The influence of the frequency-dependent stiffness of the 

rail-fastening system on the spectral acceleration response 
of the car body and bogie in low frequency-range is negli-
gible due to the low-stiffness suspension systems for rid- 
ing comfort of passenger metro cars; 

(2) Considering the frequency-dependent characteristics of dy- 
namic stiffness of rail-pads, the FDS model can provide a 
strengthening benefit to the dominant frequency in spec- 
tral response of the wheel-rail system to higher ones for 
the TRB system; 

(3) In conjunction with the viscous nature of rubber rail-pads, 
the spectral response at shifted dominant frequency can 
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be efficiently mitigated for vibration of the wheel-rail and 
slab-track system. 
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