
Volume 27 Issue 4 Article 4 

PARAMETER IDENTIFICATION USING THE NELDER?€“MEAD SIMPLEX PARAMETER IDENTIFICATION USING THE NELDER?€“MEAD SIMPLEX 
ALGORITHM FOR LOW SIGNAL-TO-NOISE RATIO SYSTEMS IN A ALGORITHM FOR LOW SIGNAL-TO-NOISE RATIO SYSTEMS IN A 
FREQUENCY DOMAIN FREQUENCY DOMAIN 

Chyun-Chau Fuh 
Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C., 
f0005@mail.ntou.edu.tw 

Hsun-Heng Tsai 
Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung, 
Taiwan, R.O.C. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Fuh, Chyun-Chau and Tsai, Hsun-Heng (2019) "PARAMETER IDENTIFICATION USING THE NELDER?€“MEAD SIMPLEX 
ALGORITHM FOR LOW SIGNAL-TO-NOISE RATIO SYSTEMS IN A FREQUENCY DOMAIN," Journal of Marine Science 
and Technology: Vol. 27 : Iss. 4 , Article 4. 
DOI: 10.6119/JMST.201908_27(4).0004 
Available at: https://jmstt.ntou.edu.tw/journal/vol27/iss4/4 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol27
https://jmstt.ntou.edu.tw/journal/vol27/iss4
https://jmstt.ntou.edu.tw/journal/vol27/iss4/4
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol27/iss4/4?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss4%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


332 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 332-342 (2019 ) 
DOI: 10.6119/JMST.201908_27(4).0004 

 

PARAMETER IDENTIFICATION USING  
THE NELDER–MEAD SIMPLEX ALGORITHM FOR 

LOW SIGNAL-TO-NOISE RATIO SYSTEMS IN  
A FREQUENCY DOMAIN 

 
 

Chyun-Chau Fuh1 and Hsun-Heng Tsai2 

 
 

Key words: parameter identification, frequency domain, simplex al- 
gorithm, noise. 

ABSTRACT 

Parameter identification algorithms are very fundamental 
techniques in system engineering practices.  For example, esti- 
mating the parameters of the AutoRegresive model with an 
eXternal input or AutoRegresive Moving-Average model with 
an eXternal input by using the least squares (LS) method has 
become a standard approach.  However, the estimated parameters 
may generate extremely erroneous results when the signal is 
disturbed by large noise, which cannot be effectively filtered.  
If a frequency response method that scatters the power of a 
broadband noise over different frequencies is adopted, the 
effect of noise on the estimated parameters would be relatively 
reduced.  Moreover, estimating whether the plant is a high- 
order system or is perturbed by a large noise is difficult.  The 
estimated accuracy decreases even after applying the gener-
alized LS method or other modified approaches.  To overcome 
this problem, this study proposed a new technique combining 
a simplex algorithm and frequency response method for improving 
the accuracy of the parameter estimation of a dynamic system 
with a large noise (i.e., an extremely low signal-to-noise ratio) 
of the system.  The algorithm is simple and easy to implement.  
Moreover, the precision of parameter identification can be in- 
creased even when estimated systems suffer from large measure- 
ment noises. 

I. INTRODUCTION 

The principle of system identification is to utilize the measured 

input-output signals for deducing the mathematical model and 
related parameters of a dynamic system.  Continuous and discrete- 
time transfer functions, state space models, and process models 
can be identified using input–output data in a time or frequency 
domain (Norton, 1986; Ljung, 1987; Johansson, 1993; Bosch 
et al., 1994; Verhaegen et al., 2007; Keesman, 2011; Nevaranta 
et al., 2017). 

The least squares (LS) or generalized LS (GLS) method is 
generally employed to estimate dynamic systems constructed 
using the AutoRegresive model with an eXternal input (ARX) 
or AutoRegresive Moving-Average model with an eXternal 
input (ARMAX).  However, in systems with a relatively low 
signal-to-noise ratio (SNR), large estimation deviations are 
frequently observed (Ljung, 1987). 

In the study, the Nelder-Mead simplex method was used to 
identify the parameters of a system with the characteristics of a 
low SNR based on a frequency domain.  The simplex method 
was primarily presented by Spendley, Hext, and Himsworth 
(1962), which was further improved by Nelder and Mead 
(1965).  The algorithm presented by Nelder and Mead (referred 
to as the N-M simplex method or N-M method in this study) is 
an easy to implement and underutilized method for calculating 
the minimum or maximum value of the objective function in a 
multidimensional parameter space.  Furthermore, the objective 
function cannot be used to derive the proposed N-M method; 
therefore, it is particularity suitable for the cases, where the 
objective function is undifferentiable or unanalyzable, or in-
cludes noise (Luersen and Riche, 2004; Chelouah and Siarry, 
2005; Hedar and Fukushima, 2006; Fuh, 2009). 

The results of the numerical simulation demonstrate that the 
parameters of the dynamic system with a large noise can be eva- 
luated on the frequency domain by applying the N-M simplex 
method. 

II. NELDER-MEAD SIMPLEX ALGORITHM 

The parameter identification based on the frequency response 
method is less recognized than other methods, such as those 
mentioned in Section 1.  However, different types of noise, such 
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as white, color, broadband, low-frequency, and high-frequency 
noise, may appear in physical, electrical, mechanical, and other 
real-world systems.  The identification of the parameters of a 
system with a low SNR by using the aforementioned methods 
often fails.  In this research, the N-M simplex method with an 
objective function of frequency was proposed to estimate the 
parameters of systems with large measurement noises. 

The N-M simplex algorithm is designed to solve unconstrained 
optimization problems of the following form: 

 min ( )
n

J
p R

p  (1) 

where J(p) is an objective function (also be termed a target 
function, cost function, performance index, etc.), and p is a 
vector comprising parameters to be estimated.  After deter-
mining the form of the objective function, the N-M simplex 
method generates a sequence of simplexes, where each sim-
plex is defined using n  1 distinct vertices 0 , , np p , with 

the corresponding function values of 0 , , nJ J , respectively.  

Points 0 , , np p  are sorted such that 0 1n nJ J J   , and 

p  represents a centroid of points 0 1, , np p .  In each itera-

tion, simplex transformations in the N-M simplex method are 
controlled using parameters , , and .  They must satisfy the 
following conditions: 

 0 1, 0      . (2) 

The typical values are as follows:  = 1,  = 0.5, and  = 2.  
The values of , , , and - yield the reflection point rp , 

expansion point ep , outer contraction point cp , and inner 

con- 
traction point ccp , respectively.  The objective function at these 

four points are denoted as rJ , eJ , cJ , and ccJ , respectively.  

If none of the four points are improved on the current worst 
point np , the algorithm shrinks the points 1, , np p  toward 

the lowest 0p , thereby producing generating a new simplex.  

In the shrinking process, each jp  is replaced by  00.5 jp p  

for 1, ,j n  .  A new iteration is automatically triggered 

after accomplishing the shrinking process.  This iterative pro- 
cess is continued until the specified termination criteria are 
satisfied (e.g., when the iterations reach the allowed maximum 
number and the accuracy of seeking the function value 0J  is 

higher than the default value). 
The geometric phenomenon of the N-M simplex method for 

a two-dimensional parameter (i.e., n = 2) is discussed in this 
section.  A typical N-M simplex algorithm may generate a 
series of simplexes.  Each simplex comprises three vertices 

0p , 1p , and 2p  with the corresponding objective function 

values 0J , 1J , and 2J , respectively, where vertices 0p , 1p , 

and 2p  are ordered as follows: 0 1 2J J J  , and p  denotes 

the centroid of 0p  and 1p .  In each iteration, the N-M simplex 

method examines one or more of four different  values along 
the line  n p p p , (n = 2 in this example).  These four 

values , , , and - yield the reflection point rp , expansion 

point ep , outer contraction point cp , and inner contraction 

point ccp , respectively.  The objective function values at these 

four points are denoted as rJ , eJ , cJ , and ccJ .  If none of the 

four points represent an improvement on the current worst 
point 2p , the algorithm shrinks points 1p  and 2p  toward the 

optimal point 0p , thereby producing a new simplex.  In the 

shrinking process, each jp  is replaced by  00.5 jp p  for 

1, 2j  .  After producing a new simplex, a new iteration is 

automatically triggered.  This iterative process is continued 
until the specified termination criteria are satisfied. 

A conventional algorithm for the N-M simplex method is 
summarized as follows: 

Initialization 

Step 1. Let  = 1,  = 0.5, and  = 2. 
Step 2. Give an initial simplex comprising n  1 vertices  

p0, , pn. 
Step 3. Calculate function values 0 , , nJ J  corresponding 

to p0, , pn, respectively. 

Loop 

Step 4. Sort p0, , pn such that 0 , , nJ J  are in an ascend- 

ing order. 
Step 5. (Reflection) Let  r n  p p p p  and calculate 

Jr. 
Step 6. Let newp  be undefined. 

Step 7. If 0rJ J , go to Step 8; else go to Step 10. 

Step 8. (Expansion) Let  e n  p p p p  and calculate Je. 

Step 9. If e rJ J , new ep p ; else new rp p .  Go to Step 15. 

Step 10. If r nJ J , go to Step 11; else go to Step 13. 

Step 11. (Outer contraction) Let  c n  p p p p  and cal- 

culate Jc. 
Step 12. If c rJ J , new cp p ; else new rp p .  Go to Step 17. 

Step 13. (Inner contraction) Let  cc n  p p p p  and cal- 

culate Jcc. 
Step 14. If cc nJ J , new ccp p .  Go to Step 17. 

Step 15. If newp  is undefined, go to Step 15; else go to Step 

17. 

Step 16. (Shrink) Let  00.5j j p p p  and 1, ,j n  .  Go 

to Step 18. 
Step 17. Let newn p p  and calculate Jn. 
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Step 18. If the termination criteria are satisfied, end the itera- 
tion procedure; else go to Step 4. 

III. PARAMETER IDENTIFICATION USING 
THE NELDER-MEAD SIMPLEX ALGORITHM 

Consider an nth order linear time invariant (LTI) dynamical 
system with the following transfer function: 

 
1

1 1 0
1

1 1 0

( )
n

n
n n

n

b s b s b
G s

s a s a s a







  


   



 (3) 

where the parameters are unknown but constant, and the parameter 
vector is defined as follows: 1 1 0 1 1 0 , , , , , , ,n nb b b a a a    p   .  

In this section, the estimation of the parameter vector p is 
proposed using the N-M simplex algorithm. 

Because in actual experiments, the parameter identification 
is generally performed using a digital computer, t (unit: s) 
was used to represent the sampling time of the signal.  Thus, 
the sampling frequency can be denoted using 1/sf t   (unit: 

Hz) or 2s sf   (unit: rad/s). 

Before performing parameter identification for a system, 
the stability of the system in an open-loop mode must be con- 
firmed.  First, the open-loop system was assumed to be stable.  
The algorithm proposed in this study for a stable open-loop 
system is as follows: 

1. Stable System 

Step a: Directly inject a sinusoidal exciting signal uk(t) = 
sin( )k kA t  and 1,...,k N  to the open-loop system. 

Step b: Measure the steady output signal yk(t) = sin( )k k kB    

and 1, ,k N  . 

Step c: Perform fast Fourier transform (FFT) (Brigham, 1988; 
Oppenheim, 1989) for uk(t) and yk(t) to obtain ( )kU j  

and ( )kY j , respectively.  Define 
( )ˆ ( )
( )

k
k

k

Y j
G j

U j





 . 

Step d: Provide an initial simplex comprising n  1 vertices 

0 , , np p . 

Step e: Calculate objective function values 0 , , nJ J  corre-

sponding to 0 , , np p , respectively.  In this study, the 

definition of the objective function J is crucial, which 
is thoroughly explained in the following sections. 

Step f: Go to Step 4 of the N-M simplex algorithm, which is 
described in the previous section. 

Step g: If the termination criteria are satisfied, but the number 
of iterations is less than the set value, the optimal es-
timation p* can be obtained.  The optimal estimation 
p* may not be the global optimal estimation.  If the 

difference between the Bode diagram of ˆ ( )G p  and 

the actual frequency response is extremely high, re-
select another initial simplex and go to Step e. 

Consider an LTI system, where an open-loop transfer func- 
tion is unstable.  For this unstable system, a controller must first 
be designed to stabilize the system through a trial and error 
process.  The parameter estimation method is similar to the 
parameter estimation process for a stable system.  The detailed 
estimation steps are as follows: 

2. Unstable System 

Step a: Design an appropriate feedback controller to stabilize 
the original system. 

Step b: Let the reference signal be r = 0.  Denote the original 
output signal of the controller by using uc, which is a 
sinusoidal exciting signal, as ( ) sin( )ext k ku t A t , 

1, ,k N  .  Assume 1k k   .  The total control 

signal is written as k c extu u u  . 

Step c: Measure the steady output signal and denote the signal 
as  ( ) sink k k ky t B t   , 1, ,k N  . 

Step d: Perform FFT for uk(t) and yk(t) to obtain ( )kU j  and 

( )kY j , respectively.  Define 
( )ˆ ( )
( )

k
k

k

Y j
G j

U j





 . 

Step e Provide an initial simplex comprising n  1 vertices 

0 , , np p . 

Step f: Calculate objective function values 0 , , nJ J  corre-

sponding to 0 , , np p , respectively. 

Step g: If the termination criteria are satisfied, but the number 
of iterations is less than the set value, the optimal es-
timation p* can be obtained.  The optimal estimation 
p* may not be the global optimal estimation.  If the dif- 

ference between the Bode diagram of ˆ ( )G p  and ac-

tual frequency response is extremely high, reselect 
another initial simplex and go to Step f. 

 
In this study, the objective function applied in the simplex 

method is defined as follows: 

 

2

1

2

1

ˆˆ ˆ( ) ( ) ( , )

ˆ ˆ( ) ( , )

N
k

mag k k
dBk

N
k

phase k k
k

J w G j G j

w G j G j

  

  





 

  





p p

p




 (4) 

where k denotes the kth frequency.  
2

1

ˆ ˆ( ) ( , )
N

k
k k

dBk

G j G j  


 p  can 

be considered a magnitude error function.  
2

1

ˆ ˆ( ) ( , )
N

k
k k

k

G j G j  


  p  

is considered a phase error function.  Because the units are 
different [i.e., decibel (dB) and degree ()] in order to balance 
the effects of the two aforementioned functions within the 
objective function ˆ( )J p , the magnitude error function and 

phase error function are multiplied by weightings magw  and 

phasew , respectively.  Without loss generality, 1phasew  ; how- 
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ever, the weighting magw  may be tuned based on different 

systems.  Improved estimation results are generally observed 
when magw  is higher than 10 according to our experience.  

Furthermore, because most physical systems (plants) have the 
common characteristic, such as low-pass filters, it implies a 
low SNR and high frequency of the exciting signal when the 
systems are disturbed by white or broadband noises.  To improve 
the accuracy of parameter identification at high frequencies, 
weighting k (parameter  must satisfy the following condition: 
0 <  < 1 and 1, 2, , / 2k N  ) is multiplied with the magni- 

tude error function and phase error function to reduce the effect 
of high-frequency data.  In this study, we choose  = 0.995 for 
all simulations.  Sometimes, if the errors of the simulations or 
experiments are extremely high in the Bode diagram, those data 
can be eliminated.  The data outside the two yellow vertical lines 
are neglected in this research. 

IV. NUMERICAL SIMULATION 

To demonstrate the superiority of the proposed method, the 
simulation results of the proposed method in the frequency do- 
main were compared with the results of the LS method (GLS 
method) in the time domain.  The two methods are as follows: 

 
Step 1. First, create a mathematical model for the real phy- 

sical system (plant). 
Step 2. Inject a white exciting signal u() into the system, and 

simultaneously measure the output signal y(). 
Step 3. Substitute the exciting signal (input signal) u() and the 

output signal y() in the LS and generalized LS algo-
rithms to estimate the corresponding discrete transfer 

functions 1ˆ ( )G z  of the ARX and ARMAX models, 

respectively. 

Step 4. Convert the discrete transfer function 1ˆ ( )G z  into a 

continuous transfer function ˆ ( )G s . 

 
Throughout the simulation study, we let the common pa-

rameters be phase error weighting 1phasew  , sampling points 

N = 2048, and  = 0.995.  The iterative process of the N-M 
simplex algorithm is continued until the iterations reach 500.  
Furthermore, only the estimated results by using the N-M sim- 
plex method are compared with the exact system in all the figures.  
The estimated results are not shown in the figures because the 
errors are extremely large or are negligible. 

Case A: Fourth-Order Stable LTI System (Relative Degree of 4) 

First, consider the following fourth-order stable LTI system 
with two different real poles and a pair of conjugate poles but 
no zeros (relative degree of 4): 

 
7

4 3 2

1.275 10

45 2350 45500 255000s s s s


   

 (5) 

Nm60

100 101 102

40

G
(
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B
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0
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Fig. 1. Magnitude diagram of case A.  (The data after the vertical line 
Nm are ignored throughout this research.) 
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Fig. 2.  Phase diagram of case A. 
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Fig. 3.  Step response verification of case A. 

 
 
A simple MATLAB code for this case is appended at the 

end of this paper.  Table 1 and Figs. 1-3 provide simulation 
results, which are based on a sampling time of 0.02 s, 

20magw  , and an SNR approaching 7.  The proposed method 

is suitable for this example. 
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Table 1.  Estimated results when the identification of ARX and ARMAX fails. 

Exact Model 

Transfer function 
7

4 3 2 4 5

1.275 10

45 2350 4.55 10 2.55 10s s s s


     

 

Zeros - 

Poles 

-10  j40 
-10  j40 

-15 
-10 

N-M Simplex Method 

Transfer function 
7

4 3 2 4 5

1.266 10

45.99 2364 4.592 10 2.564 10s s s s


     

 

Zeros - 

Poles 

-10.3282  j39.7774 
-10.3282  j39.7774 

-15.596 
-9.7349 

ARX with Least-Square Method 

Transfer function 
4 3 2 6 8

4 3 4 2

4

6 6

0.336 1988 10 2.942 10

152 2.203 10

4.377 10 7.90

1.165 10 7.344 10

1s s s s

s s s s

   
     





 

Zeros 

5937.9 
-6.5  j65.9 
-6.2  j65.9 

33.9 

Poles 

-40.35  j119.10 
-40.35  j119.10 

-64.08 
-7.25 

ARMAX with Generalized Least-Square Method 

Transfer function 
2 7 8

4 3 4

4 5

2 6 6

3 1.543 10 4.486 10.1526 0

232.9 3.

9192 1.18

467 10 1.39 10 8.824 10

5 10s s s s

s s s s

   
      

  
 

Zeros 

60243 
-17  j46 
-17  j46 

21 

Poles 

-89.63  j129.07 
-89.63  j129.07 

-45.91 
-7.78 
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Table 2.  Estimated results of case B, where the identification of ARX and ARMAX fails. 

Exact Model 

Transfer function 
2

4 3 4 2 5 7

2 40 10000

34.29 3.371 10 3.214 10 7.143 10

s s

s s s s

 
      

 

Zeros 
-10  j70 
-10  j70 

Poles 

-12.94  j176.18 
-12.94  j176.18 

-4.2  j47.66 
-4.2  j47.66 

N-M Simplex Method 

Transfer function 
2

4 3 4 2 5 7

1.987 40.2 9960

35.53 3.37 10 3.326 10 7.149 10

s s

s s s s

 
      

 

Zeros 
10.1185 70.0817

10.1185 70.0817

j

j

 
   

Poles 

-13.42  j176.06 
-13.42  j176.06 
-4.35  j47.69 
-4.35  j47.69 

ARX with Least-Square Method 

Transfer function 
6 4 3 2 6

4 3 5 2 7 10

3.743 10 0.02496 6.435 522.7 1.367 10

619.8 4.131 10 7.703 10 1.01 10

s s s s

s s s s

      
      

 

Zeros 
69198 

991  j3276 
991  j3276 

Poles 

-201.66  j500.45 
-201.66  j500.45 
-108.27  j151.53 
-108.27  j151.53 

ARMAX with Generalized Least-Square Method 

Transfer function 
6 4 3 2 4 6

4 3 5 2 8 10

3.392 10 0.08342 21.41 1.57 10 5.427 10

2101 8.895 10 3.279 10 3.612 10

s s s s

s s s s

       
      

 

Zeros 

-24857 
-26  j452 
-26  j452 

314 

Poles 

-1680.5 
-134.4  j351.3 
-134.4  j351.3 

-151.9 
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Fig. 4.  Magnitude diagram of case B. 
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Fig. 5.  Phase diagram of case B. 
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Fig. 6.  Step response verification of case B. 

 

Case B: Fourth-Order Stable LTI System (Relative Degree of 2) 

Consider the fourth-order stable LTI system with the follow- 
ing transfer function, with two pairs of conjugate poles and one 
pair of conjugate zeros (relative degree of 2).  The simulation 
parameters are as follows: an SNR of approximately 0.9, a 
sampling time of 0.005 s, and 20magw  . 

 
Fig. 7. Block diagram of case C with a feedback controller and sinusoidal 

exciting signal. 
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Fig. 8.  Magnitude diagram of case C. 
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 (6) 

Table 2 and Figs. 4-6 show the simulated results.  The results 
indicate that the proposed approach is feasible.  For the estimated 
data of the other two methods, their results are not provided in 
the figures because they are irrelevant. 

Case C: A Second-Order Unstable LTI System 

Consider a second-order single-input single-output LTI system 
with the following open-loop transfer function:  

 
2

2.5 5

36

s

s




 (7) 

Because the open-loop system is unstable, its parameters 
cannot be identified through direct excitation.  Therefore, a trial 
and error method is generally used to design a controller, which 
can stabilize the system and perform system parameter identifi- 
cation.  When the system parameters are estimated, the controller 
with improved performance or high robustness can be redesigned 
based on the estimated system model, which is one of the pri- 
mary aims of system parameter identification. 

In this example, the trial and error method was applied to a 
proportional-derivative controller as 3500c P Du K e K e e     

100e , where e y r   and reference signal 0r  .  Fig. 7 shows 
the closed-loop system. 
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Table 3. Estimated results of case C, where the identification of ARX and ARMAX fails. 

Exact Model 

Transfer function 
2

2.5 5

36

s

s




 

Zeros 2  

Poles 
6

6
 

N-M Simplex Method 

Transfer function 
2

2.445 4.95

34.98

9

s

s 


 

Zeros -2.0281 

Poles 
5.8141 
-5.9141 

ARX with Least-Square Method 

Transfer function 
3 2 5

3 2 5 6

0.002852 4.066 104.9 4.337 10

227.7 1.153 10 4.879 10

s s s

s s s

   
    

 

Zeros 
-1515.9 

45.2  j313.5 
45.2  j313.5 

Poles 
-91.03  j314.16 
-91.03  j314.16 

-45.61 

ARMAX with Generalized Least-Square Method 

Transfer function 
3 2 5

3 2 5 6

0.0006716 1.875 1816 9.083 10

973.9 3.415 10 3.918 10

s s s

s s s

   
    

 

Zeros 
-1650.1 

-571.1  j702.4 
-571.1  j702.4 

Poles 
-481.01  j314.16 
-481.01  j314.16 

-11.87 

 
 

sin( )ext k ku A t  denotes a sinusoidal exciting signal.  The 

total control signal can be written as k c extu u u  .  In this 

example, the sampling time is 0.01 s, magnitude error weighting 
10magw  , and the SNR is less than 1.0.  Table 3 and Figs. 8-10 

show the estimated results.  This example validates that the pro- 
posed approach of using the N-M simplex method in the frequency 
domain is feasible for a system disturbed by large measurement 
noise. 

CONCLUSION 

In any identification method, avoiding parameter biases is 
difficult when the estimated systems are disturbed by measure- 
ment noise.  When using conventional methods based on LS to 
identify the systems disturbed by large white/color noise, the 
estimated parameters may include severe errors and thus, the re- 
sults become useless.  For enabling control engineers to select 
or design more appropriate (or robust) controllers, obtaining  
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Fig. 9.  Phase diagram of case C. 
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Fig. 10.  Step response verification of case C. 

 
accurate characteristics of the plants in advance is essential. 

This study proposed an approach combining the N-M simplex 
method and the frequency response method to estimate systems 
with large measurement noises (or a low SNR).  The simulation 
results show that by using the simplex method in the frequency 
domain, more accurate models and estimated systems with large 
measurement noises can be obtained. 

 

The proposed algorithm can be easily implemented.  Because 
the power of noise is distributed over a wide range, the effect of 
noise can be reduced to obtain more precise parameters.  The 
N-M method does not require the derivatives of the objective 
function, and thus, it can be specifically applied to problems 
with discontinuities or an object function (or the system) that 
includes noise. 
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APPENDIX 

function Parameter_ID_via_Simplex_Method 
global N_halves 
global n_exact 
global w2 
global lambda 
global db_exp phase_exp 
global mag_weighting phase_weighting 
global num_zeros den_zeros 
N = 2^11; % Length of signal 
N_halves = N/2; % Significant length of FFT 
lambda = 0.995.^(1:N_halves)'; % Frequency weighting vector 
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ZERO = []; % Zero(s) of the exact system 
POLE = [-10  40j, -10-40j, -15, -10]; % Pole(s) of the exact system 
GAIN = 50.0; % dc gain of the exact system 
num_exact0 = poly(ZERO); % Original numerator polynomial of the exact system 
den_exact  = poly(POLE); % Denominator polynomial of the exact system 
num_exact  = num_exact0*GAIN*den_exact(end)/num_exact0(end); % Modified numerator polynomial 
 % of the exact system 
dt = 0.02; % (sec) Sampling period 
Amp = 10; % Amplitude of the input sinusoidal signal 
sigma = 40; % Standard deviation of the output noise 
fs = 1/dt; % (Hz) Sampling frequency 
f1 = fs/N; % (Hz) Frequency resolution of the FFT 
w1 = 2*pi*f1; % (rad/sec) Frequency resolution of the FFT 
w  = w1*(1:N)'; % (rad/sec) Create the frequency data (vector) 
lambda(N_halves-650:end) = 0; % Neglect the data after (N_halves-650)*w1 
mag_weighting = 20; % Magnitude error weighting 
phase_weighting = 1; % Phase error weighting 
w2 = w(1:N_halves); % (rad/sec) Frequency grid 
t  = (0:N-1)'*dt; % (sec) Time grid 
n_exact = length( den_exact )-1; % The order of the denominator polynomial 
m_exact = length( num_exact )-1; % The order of the numerator polynomial 
sys_exact = tf( num_exact, den_exact ) 
num_zeros = 0; % Number of the zero(s) at the origin of the exact system 
den_zeros = 0; % Number of the pole(s) at the origin of the exact system 
 
%--- Call Generate_Freq_Domain_Data to generate the frequency domain data of the exact system 
[mag_exp, phase_exp] = Generate_Freq_Domain_Data( sys_exact, w, t, Amp, sigma ); 
db_exp = mag2db(mag_exp); % Convert magnitude to decibels (dB) 
 
%--- Simplex Method -------------------------------------------------------------------------- 
poly_den = poly( [-10+10j,-10-10j,-10,-10] ); % Denominator polynomial of the transfer function 
poly_num = 56*poly_den(end); % Numerator polynomial of the transfer function 
X0 = [ poly_den(2:end-den_zeros), poly_num(1:end-num_zeros)] 
 
max_iter = 500; % Maximum Iteration for the simplex algorithm 
options = optimset('MaxIter', max_iter); % Create an options structure for fminsearch 
X = fminsearch(@Obj_Function, X0, options); % fminsearch is a MATLAB® optimization function  

% which can find minimum of unconstrained function using derivative-free (simplex) method 
 
num_simplex = [X(1, n_exact-den_zeros  1:end), zeros(1, num_zeros)]; 
den_simplex = [1, X(1, 1:n_exact-den_zeros), zeros(1, den_zeros)]; 
sys_simplex = tf(num_simplex, den_simplex) % Create a continuous-time transfer function with 

% numerator(s) and denominator(s) specified by num_simplex and den_simplex 
 
%% === The function to generate the frequency domain data of the exact system ====================== 
function [mag_exp, phase_exp] = Generate_Freq_Domain_Data( sys_exact, w, t, Amp, sigma ) 
N = length(w); 
N_halves = N/2; 
mag_exp = zeros(N_halves,1); 
phase_exp = zeros(N_halves,1); 
a_u = zeros(N_halves,1); 
b_u = zeros(N_halves,1); 
a_y = zeros(N_halves,1); 
b_y = zeros(N_halves,1); 
% Inject a sinusoidal exciting signal, Amp*sin(w(k)*t), to the exact system, and measure the steady 
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% output signal, ak*cos(w(k)*t)+bk*sin(w(k)*t), in which ak and bk are estimated by fft. 
for k = 1:N_halves 

u_w0 = Amp*sin(w(k)*t); % Real input signal without noise 
noise = sigma*randn(N, 1); % Random noise with standard deviation, sigma 
u_w = u_w0; 
y_exact_w = lsim(sys_exact, u_w, t); % Exact output signal without noise 
y_exp_w = y_exact_w  noise; % Real output signal with measurement noise 
fft_u = fft(u_w); 
a_u(k) = real(fft_u(k1)*2/N); 
b_u(k) = imag(fft_u(k1)*2/N); 
fft_y = fft(y_exp_w); 
a_y(k) = real(fft_y(k1)*2/N); 
b_y(k) = imag(fft_y(k1)*2/N); 
mag_exp(k) = fft_y(k1)/fft_u(k+1); 
phase_exp(k) = atan2(b_y(k), a_y(k)) - atan2(b_u(k), a_u(k)); 

end 
phase_exp = rad2deg(unwrap(phase_exp ) ); 
mag_exp = abs(mag_exp); 
 
%% === The objective function applied in the simplex method ================================== 
function index = Obj_Function(p) 
global N_halves 
global n_exact 
global w2 
global lambda 
global db_exp phase_exp 
global mag_weighting phase_weighting 
global num_zeros den_zeros 
den = [1, p(1:n_exact-den_zeros), zeros(1,den_zeros)]; 
num = [p(n_exact-den_zeros+1:end), zeros(1,num_zeros)]; 
[mag_simplex, phase_simplex] = bode(num, den, w2); 
db_simplex = mag2db( mag_simplex ); 
index_db = norm(lambda.*(db_exp(1:N_halves)-db_simplex))^2; 
index_phase = norm(lambda.*(phase_exp(1:N_halves)-phase_simplex))^2; 
index = mag_weighting*index_db + phase_weighting*index_phase; 

 
 


