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ABSTRACT 
Cable-supported bridges with floating towers do not require 

fixed piers at the seabed.  Therefore, innovative conceptual 
models have been continuously developed to overcome the 
limitations of conventional bridges in deep waters.  The main 
floating tower that supports superstructures using stay cables 
is balanced by the buoyancy of floaters moored by tethers.  The 
applicability of floating bridges should be verified by evaluat-
ing the overall stability considering the tether design.  Here, 
various cases of the sudden failure of tethers and stay cables 
under the environmental conditions of a 100-year return period 
are simulated in a time-domain.  The floating cable-stayed 
bridges are subjected to constantly changing environmental 
loads such as wind, waves, and current.  The dynamic analysis 
of these loads was performed, applying the irregular wave load 
generated by the Joint North Sea Wave Project (JONSWAP) 
spectrum model.  The structural responses of the floating 
bridges were evaluated via hydrodynamic analysis after the 
sudden failure was simulated.  In this study, various cases were 
evaluated considering the number of failed tethers and stay ca-
bles.  When the four tethers suddenly failed in the 100-year 
return period wave conditions, some of them exhibited struc-
tural stress exceeding the yield stress, and others even suffered 
compression.  The effects of the sudden failure of the tethers 
and stay cables on the change in structural responses and states 
were directly compared in an intensive parametric study.  Ac-
cording to the analytical study, the sudden failure of the tethers 
induces a significant increase in the dynamic responses of the 
floating bridges.  

I. INTRODUCTION 
Conventional marine bridges have been widely used as 

sea-crossing transportation infrastructure because of their 
sufficient reliability and verification.  However, they are lim-
ited by environmental conditions, especially in deep waters.  
Additionally, the constructability and structural stability of the 
high-rise compressive members are critical issues in the design 
and construction of the bridge in deep waters.  To address these 
issues, many researchers have proposed floating bridges or 
submerged floating tunnels (SFTs) as new alternative transpor-
tation structures.  Feasible concepts (Martire, 2010; Østlid, 
2010; Norwegian Public Roads Administration, 2011; Ellevset, 
2014; Villoria et al., 2017a), static and dynamic behaviors of 
floating bridges (Cheng et al., 2020; Dai et al., 2020; Dørum 
et al., 2017; Jin and Kim, 2017; Papinutti et al., 2017a; Villoria 
et al., 2017b) and submerged floating tunnels (Kunisu et al., 
1994; Remseth et al., 1999; Pilato et al., 2008; Won and Kim, 
2018; Won et al., 2019), as well as effective analysis methods 
(Cifuentes et al., 2015; Papinutti et al., 2017a; Papinutti et al., 
2017b) have been studied.  Unlike SFTs, which have never 
been built, floating bridges have been built in many countries, 
such as Norway and the United States.  Thus far, a long-span 
floating bridge has not yet been built; however, studies on 
long-span floating bridges have been carried out continuously 
and have a high possibility of realization. 

Papinutti et al.(2017a) used time-domain tools to analyze 
the coupled wind and wave load responses of a long-span 
floating suspension bridge.  For the initial screening analysis, 
a frequency-domain analysis was conducted to evaluate the 
critical combination of the wind events of a TLP suspension 
bridge (Papinutti et al., 2017b).  The floating suspension 
bridge model was examined in a study on the E39 project in 
Norway, and the environmental conditions in the E39 region 
were found to be relatively mild.  Kim et al. (2018) presented 
an overview of the main hydrodynamic analysis techniques for 
cable-supported bridges with floating towers.  Jang et al. (2020) 
evaluated the effects of the various geometric parameters on  
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Fig. 1.  Sudden failure analysis procedure 

 
 

the static structural state under the dead load and suggested the 
primary design strategy of the floating cable bridges.  Kim et 
al. (2019) studied the short-term fatigue of a tether with vari-
ous tether slopes, under severe environmental conditions. 

Structural stability and safety are mainly determined by the 
design of the tether moored to the main tower of the floating 
cable bridge.  Unfortunately, owing to tether's replacement or 
sudden failure that dominates the overall behavior of floating 
cable bridges, these structures have not yet been evaluated in 
detail, although the behavior of the conventional cable-stayed 
bridge, which is affected by stay cable failure has been studied 
(Kim and Kang, 2016). 

In this study, the dynamic behavior of a floating cable-
stayed bridge after the sudden failure of a tether or cable was 
evaluated under a 100-year return period irregular wave load-
ing.  To evaluate the dynamic behavior, hydrodynamic finite 
element analysis was performed using ABAQUS AQUA 
(Simulia Inc, 2019), and a JONSWAP wave spectrum model 
was used to simulate the extreme irregular wave conditions 
of the 100-year return period. 

II. THEORETICAL BACKGROUND AND 
SIMULATION STRATEGY 

1.  Equation of motion of the submerged rods 
The hydrodynamic wave load acting on a submerged struc-

ture is calculated based on the circular motion of water parti-
cles from the wave.  The load generated by the circular motion 
of the water particles is calculated using the wave potential 
theory and reflects the characteristic values according to the 
frequency domain of the structure.  However, the hydrody-
namic wave load can be calculated by simply using the Mori-
son equation, which provides the wave load acting on a line 
element having a smaller area than the wavelength (Xu et al., 
2019).  In this study, the hydrodynamic environmental load 
acting on the submerged floaters and tethers is calculated using 
Morison's equation shown in Eq. (1). 

( )
( )

1( )+
2

1
2

d n n n n n n n
I A I D

n n n n n n
A I M I D

F A V C A V r C D V r V r

C A r C A V C D V r V r

ρ ρ ρ

ρ ρ ρ

= + − − −

= − + + − −

    

  
 (1) 

 ( )
( )1

2

s d
n

n n
I A I M I

n n n n
D D

q w F F

w B PA r C A r C A V

C A V r V r

ρ ρ

ρ

′′

= + +

= + − − +

+ − −



 

 (2) 

where nq = force acting on the submerged member, w = weight 
per unit length, sF  = hydrostatic force per unit length, dF  = 
hydrodynamic force per unit length, IC = inertia coefficient,  

DC = drag coefficient, MC = mass coefficient = 1AC + , AC = 
added mass coefficient, nr  and nr   are the normal structural 
velocity and acceleration of the rod, respectively, andn nV V

are the normal velocity and acceleration of the water particle, 
respectively, ρ = fluid density, IA = cross sectional area nor-
mal to centerline of the rod, and DA = cross sectional area of 
the rod projected to a plane normal to the centerline of the rod. 

2. Procedure of sudden failure analysis of tethers and stay 
cables for floating cable-stayed bridges under irregular 
waves 
Cables experience tensile stress only when tensile strain oc-

curs; those in cable bridges require large tensile forces to sup-
port the superstructure.  Therefore, if initial tension is not ap-
plied, the state of the cable is different from the shape of the 
initially designed structure, until the cable creates a tension 
that balances the force with the superstructure.  The initial 
shape analysis of the cable bridge is essential for calculating 
and applying the appropriate initial tensile forces.  In this study, 
because the tethers mooring the floater of the floating cable 
bridge have similar mechanisms, the initial shape analysis of  
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Table 1. Section properties of the main members 

 Section area 
A (m2) 

2nd moment of inertia 
I (m4) 

Unit weight 𝜸 (kN/m3) 
Compressible 

 
Modulus of elasticity 

E (N/m2) 
Yielding 𝝈𝒚 (Mpa) 

Girder 0.75 1.45 77.01 Y 2.1 × 10ଵଵ 355 
Tower 0.37 3.14 77.01 Y 2.1 × 10ଵଵ 355 
Cable 0.01 - 77.01 N 2.1 × 10ଵଵ 1800 
Tether 0.0364 - 77.01 N 2.1 × 10ଵଵ 448 
 
 

 
Fig. 2.  Analysis model of the floating cable-stayed bridge 

 
 

 
Fig. 3.  ABAQUS analysis model 

 
 

the floating cable bridge was performed considering not only 
the cable but also the tether. 

An initial shape analysis was performed as the 1st analysis 
step by repeatedly analyzing and updating the initial tension of 
the tether and cable based on the static dead load of the floating 

cable-stayed bridge, before performing the hydrodynamic 
analysis of the wave load.  After determining the appropriate 
initial tension of the tether and cable through the static analysis 
of the initial shape, a hydrodynamic analysis of the intact con-
dition of the floating cable-stayed bridge was performed as  
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Fig. 4.  Position and numbering of tethers attachment 

 
 

 
Fig. 5.  100-year return period irregular wave generated by JONSWAP wave spectrum 

 
 

the 2nd analysis step.  To simulate the dynamic behavior of 
the structure after a sudden fracture, the same hydrodynam-
icanalysis was performed as the 3rd step after removing the 
tether or cable element at a specific time of the 2nd analysis 
step during the continuous wave loading.  Further, the sudden 
failure behavior of the structure was compared and evaluated 
at the intact condition via FEM analysis.  Fig. 1 shows the sim-
ulation process of the time-domain sudden failure analysis for 
the floating cable-stayed bridges. 

III. BEHAVIORAL CHARACTERISTICS AFTER 
SUDDEN FAILURE OF TETHERS AND STAY 

CABLES UNDER IRREGULAR WAVES 

1.  Analysis model and environmental condition 
As shown in Fig. 2, the analysis model of the floating cable-

stayed bridge had a total length, center span, tower height (top 
of tower to girder), and free water spacing of 920 m, 480 m, 
128 m, and 25 m, respectively.  The water depth was assumed 

to be 500 m.  As shown in Fig. 3(a), the superstructure is sup-
ported by a total of 80 stay cables in a two-sided arrangement, 
the cables are anchored to H-type floating towers, and the con-
nection between the girder and the floating tower was assumed 
to be a hinge connection. Fig. 3(b) shows the considered floater 
type, and Fig. 4 shows the arrangement of the tethers, in which 
four tethers form one cluster and 16 tethers are mooring each 
floater.  All tethers are API X70 grade steel pipes and their outer 
diameter and thickness are 0.6 m and 0.02 m, respectively.  Ta-
ble 1 shows the section properties of the main members.  For 
hydrodynamic analysis, the drag coefficient and added mass co-
efficient of the circular sections of the tethers and columns of 
the floaters were 1.2 and 1.0, respectively, whereas 2.1 and 1.51 
were applied for the rectangular section of the floaters.  In this 
study, the dynamic behavior after the sudden failure of 1, 2 and 
4 tethers (in Fig. 4, T1~T4) as well as 1 and 2 cables (in Fig. 3, 
C20 and C60) were analyzed.  Each failure member of the tether 
and the cable was determined to sequentially disconnect the 
member receiving the greatest tensile force in each condition.
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Fig. 6.  Nearest axial stress after sudden failure 

 
 
As shown in Fig. 1, in the static analysis step, the dead load 

of the main members (girder, slab, tower, stay cables, floater, 
and tethers), buoyancy, and traffic load are applied.  After de-
termining the force-equilibrium for the static loading condition, 
implicit dynamic analysis is conducted for 3,800 s under the 
irregular wave loading condition in y direction. 

Fig. 5 shows the 100-year return period irregular wave gen-
erated through the JONSWAP wave spectrum with a peak pe-
riod (Tp), a significant wave height (Hs) and an enhancement 
parameter (γ) of 15.1 s, 11.32 m and 3.3, respectively.  The 
100-year return period wave condition has been used in a 
previous study for developing offshore renewable energy 

facilities in the southern part of Korea (Son et al., 2015). 

2. Change of tensile forces of other tethers and stay cables 
after sudden failure of members 
Fig. 6 shows the dynamic tensile force change of the nearest 

tether or cable after a sudden break in 2,000 s.  It can be ob-
served that the transient effect of the tether and cable occurs 
after 2,000 s when a sudden failure occurs, and the effect is 
amplified as the number of failure members increases.  Fig. 7 
and Fig. 8 show the maximum and minimum tension values of 
the tether and cable after each failure of all members, respec-
tively. In the case of the tether, members 1 to 8 and members  
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Fig. 7.  Axial stresses of tethers after each sudden failure 

 
 

 
Fig. 8.  Axial stresses of cables after each sudden failure 
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Fig. 9.  Heave displacement of the girder after tether failure 

 
 

17 to 24 are mooring floater 1.  As evident from Fig. 7, even if 
the four tethers failure at floater 1, the tensile force change of 
the tether at floater 2 has a small effect.  This means that each 
floater exhibits partially independent behavior to the super-
structure and stayed cable even if the tether is failed.  However, 
when the four tethers suddenly fail, the maximum stress in the 
adjacent tether exceeds the yield stress, or negative tension oc-
curs.  In the case of the sudden failure of the cable, the stress 
of the cable suddenly fluctuated afterwards.  Additionally, 
there were maximum and minimum stress changes in the ten-
sions of the adjacent cables.  However, when analyzing the two 
cable breaks in this analysis, there was no significant unstable 
phenomenon. 

3. Displacements of the structure after sudden failure of 
tethers and stay cables 
Fig. 9 and Fig. 10 show the heave (vertical displacement) at 

the center of the girder because of the sudden failure of the 
tethers and cables, respectively.  As shown in Fig. 9, because 
of the tether’s failure, the average heave of the girder increases 
owing to the loss of the force that holds the buoyancy of the 
floater; however, the standard deviation increases, and a dy-
namic amplification effect is caused by the sudden failure.  The 
effect of the sudden failure of a tether is relatively small com-
pared to the stress of the tether.  Because negative tension 

occurred in the stress results when the four tethers failed, the 
heave change of the girder also caused a larger displacement 
in the downward direction.  

In contrast, in the case of cable failure, it can be observed 
that the cable supporting the girder in the upward direction is 
failed, and the heave displacement of the girder decreases. 
From Fig. 10, it can be confirmed that the sudden failure of the 
cable, which directly supports the girder significantly affects 
the displacement of the girder. 

IV. CONCLUSIONS 
In this study, an analytical procedure was proposed to 

evaluate the dynamic behavior of floating cable-stayed 
bridges after the sudden failure of the tether and cable.  The 
behavior of the time domain after sudden failure was evaluated 
based on this.  An irregular wave load of a 100-year return pe-
riod was applied, and the stress change and heave displace-
ment of the girder were evaluated according to the number of 
sudden failure members.  The conclusions of the study are as 
follows: 
A In an arrangement where four tethers form one cluster 

and four clusters hold one floater, significant displace-
ment occurred when all the tethers of the cluster failed, 
and the stresses of the remaining tethers near the failed   
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Fig. 10.  Heave displacement of girder after cable failure 

 
 
 tethers were amplified.  Therefore, to secure stability against 

tether replacement or failure, a cluster of tethers moored 
to a floater must be composed of three to four, or more 
tethers.  

B The analysis results indicated that there was no significant 
instability when two tethers in one cluster were failed. 
However, in the case of a sudden failure, it takes consid-
erable time to repair after the failure, unlike the replace-
ment of the tether.  The behavior after this causes stress 
amplification to adjacent tethers until repairs are com-
pleted.  Therefore, it is necessary to further evaluate the 
fatigue caused by the stress range amplified by the sudden 
failure of the tether. 

C Although all the main structural members are connected, 
tether failure in one floating tower does not significantly 
affect the structural response change of the other tower. 
However, a more intensive study should be conducted to 
evaluate and verify these behavioral characteristics con-
sidering more parameters such as the tower-girder stiff-
ness ratio, center-and side-span length ratio, and arrange-
ment of the stay cables and tethers. 
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