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ABSTRACT 
A hybrid underwater glider (HUG) is marine observation 

equipment that consumes a small amount of energy and offers 
greater range and navigation times.  To achieve reduced energy 
consumption, however, the HUG uses imprecise navigation 
sensors, such as mems-type GPS and AHRS, resulting in inac-
curate coordination.  This study makes a new attempt on the 
application of machine learning algorithms in a way that com-
plements sensor data errors to improve navigation perfor-
mance. 

The proposed algorithm was used to a simulation of the 
HUG’s navigation and control system, after which the updated 
heading angle was decided by using the previous position data 
and environmental data, such as ocean current and external 
forces.  The learning algorithm was designed using three layers. 
Also, the Leaky ReLU activation function was used to solve 
the problems of gradient vanishing and dying ReLU of ma-
chine learning.  And to improve the learning efficiency, active 
functions and the number of layers were changed.  The simu-
lation results show the excellent performance of the proposed 
learning algorithm.  

 

I.  INTRODUCTION 
There is a great deal of global interest in the ocean, which 

has abundant resources and energy.  With this interest, there 
are active research and development of much marine-related 
equipment for exploring and developing the ocean (Ji et al., 
2019). 

One such equipment is an autonomous underwater vehicle 
(AUV).  The AUV is suitable for autonomously undertaking a 
variety of underwater missions (Nhat et al., 2020).  However, 
the AUV has a problem with small operations time due to bat-
tery energy limitations.  To solve this problem, a long-range 
AUV to support chemical and biological sensing missions cov-
ering ranges of 1,000 kilometers or more was studied, where 
core electronics for the vehicle have been customized to mini-
mize power consumption (Hobson et al., 2016). 

As a long operation underwater vehicle, the underwater 
glider (UG) for marine surveying of the wide-area was devel-
oped, which can operate for two months with the same amount 
of battery of the AUV.  The underwater glider, first designed 
and introduced in the United States in the early 2000s, comes 
in four commercial types, namely, Slocum, Spray,  Sea glider, 
and Sea explorer as in Fig. 1. 

However, although the UG can carry out a wide-area survey, 
it lacks precise navigation control.  And, if the underwater 
glider has disturbance such as ocean currents, the disturbance 
makes the error of heading angle large, which increases by 
tracking error.  As a result, the UG moves along an undesirable 
path and consumes more energy, as shown in the UG move-
ment trajectory in Fig. 2 

This study designed a navigation system using machine 
learning to improve the navigation accuracy of a hybrid under-
water glider by adding a propeller to the existing underwater 
glider.  This study did not consider the propulsion method in 
terms of the propellant used for the mission.  The reason is that 
the main process the HUG moves is to control buoyancy.  The 
HUG is also a marine observation device belonging to a class 
of underwater gliders, and its main method of movement is to 
control buoyancy.  This method has many advantages in terms  
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Fig. 1.  Commercial underwater glider 

 
 

 
Fig. 2.  (a) Slocum glider; (b) movement trajectory of Slocum  glider 
 
 

of energy consumption, but it is vulnerable to disturbances in 
the water. 

In particular, the HUG does not obtain precise position data 
because it does not have a high-energy consumption naviga-
tion sensor, such as the Doppler velocity logger.  Therefore, it 
is difficult to measure the position of the HUG accurately. 
Thus improve the position error of the HUG, a neural network 
PID control algorithm was used to control the behavior of the 
underwater HUG, including hydrodynamic coefficients, and 
based on this, a six-degree-of-freedom(DOF) motion simula-
tor was designed. 

Also, the neural network PID control algorithm, which is 
a control algorithm that changes the gain value of the PID 
controller in real-time by user error from the target value gen-
erated by the disturbance is applied to control the sliding angle 
of the HUG.  And the navigation algorithm combining the 
HUG’s model-based indirect position measurement method 
and machine learning method was studied to improve the 
accuracy of the HUG’s navigation (Leonard and 
Graver,2001). 

In studying the neural network application, some researches 
were performed for control of AUV.  One of them is a study on 
a hybrid behavior-based scheme using reinforcement learning 
for high-level control of AUVs, where Q learning algorithm 
with a multi-layer neural network is used to learn behavior 
state/action mapping online (Carreras et al., 2005).  Other  

 
Fig. 3.  Hybrid underwater glider’s coordinate system 

 
 

research the application of deep reinforcement learning con-
trollers to 2-DOF horizontal motion in AUV trajectory track-
ing tasks, where for Partially Observable Markov Decision 
Process problem, AUVs learn from sequences of dynamic in-
formation (Huo et al., 2018).  The indirect position measure-
ment method uses the characteristics of the HUG that slides 
downward while maintaining a constant angle of attack 
(AOA) of the hull underwater by controlling buoyancy.  This 
is measured using the HUG equation of motion with the 
depth measurement data, AOA of the hull, and coefficient of 
hydrodynamic force.  Using the proposed neural network 
method, the model-based HUG navigation algorithm was de-
signed by combining the estimated results from the estimate of 
the following location data using an indirect positioning 
method, which is the navigation algorithm of the existing HUG. 

To implement these machine learning algorithms, a variety 
of supervisory learning machine learning models based on the 
datasets that study previous location and posture data was de-
signed to be diverse and empirically designed to implement the 
optimal performance of the HUG.  

In this study, a new trial of application of the machine learn-
ing algorithm composed of three layers to the navigation of the 
underwater glider was performed to improve the navigation 
performance.  The proposed algorithm predicts the next data 
by learning the present navigation data of the HUG, including 
the previous disturbance, and they are used to next the naviga-
tion of the HUG.  To verify the performance of the proposed 
neural network, a six-DOF HUG equation, including hydrody-
namics and HUG navigation simulations, including underwa-
ter disturbances, was formulated (Carreras and Ridao, 2001). 

1.  HUG Motion Model and Control System Design 
Fig. 3 shows the Earth-fixed coordinate system and body-

fixed coordinate system used to express the HUG’s motion un-
derwater.  

1.1  HUG dynamics and hydrodynamic force 
The movement of the HUG can be expressed by gravity, 

buoyancy in the water, drag, and lift of the movement, and 
thrust of the thruster.  The structure of the HUG consists of a 
hull, a buoyancy controller, an internal mass movement device,  
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Fig. 4.  Configuration of the center of mass and buoyancy center of HUG 

 
 

 
Fig. 5.  Length information of the attitude control device 

 
 

a propeller, a horizontal vane, and a rudder. 
The buoyancy change, inertial force, added mass in water, 

and shape of these devices determine the motion characteris-
tics of the HUG.  Therefore, a dynamic analysis of the buoy-
ancy engine generating the propulsion force of the HUG with 
the structure shown in Fig. 5 and the attitude control device 
dynamic analysis for controlling the posture when moving un-
derwater is required (Fiorelli et al., 2006). 

In Fig. 4, 𝑥 is the distance from the center of gravity to the 
buoyancy center, and 𝑥  is the distance from the end of the 
buoyancy engine piston to the center of gravity.  Vval is the vol-
ume change part according to the buoyancy controller, and 𝑉௫ is a fixed volume.  The buoyancy center that changes with 
the volume change is shown in Eq. 1. 

 [ ]
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varT
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In Fig. 5, the vector 𝑟ሬሬሬሬ⃗   change the center of gravity of the 
hull owing to the movement of the internal battery pack. 

Changes the mass center 𝑟ீሬሬሬሬሬ⃗  and the moment 𝐼 of inertia 
of the mass.  Such a relationship can be represented by Equa-
tions 2~4 (Tran et al., 2015). 
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Fig. 6.  Length information of the attitude control device 

 
 
Equation 3 expresses the value of rmሬሬሬ⃗ , lm , which changes by 

the change in xm in real-time. 
The change in the mass moment of inertia according to the 

change in the center of mass of the HUG was shown in Equa-
tion 4. 

  ( )  ( ) ( )o h h h h s s s s m m m mI I m r r I m r r I m r r= − + − + −  (4)  

Here, rhෝ , rsෝ,  rmෝ , and C are vector components to the center 
of mass. 

Fig. 6 shows the buoyancy control device of the HUG.  The 
buoyancy control device is a device that gains propulsion by 
changing the volume of the HUG (Kan et al., 2008).  

The buoyancy control can be expressed as Equation 5. 
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In Equation 5, q is the discharge flow rate per unit time.  A 
is the cross-sectional area of he buoyancy engine, D is the dis-
charge flow rate per pump revolution, 𝑤is the rotational an-
gular velocity of the motor connected to the pump, wbnom is the 
nominal angular velocity, 𝜂௩ is the volumetric efficiency of the 
pump, Kleak is the leak coefficient, KHP is the Hagen-poise oil 
coefficient, μ is the viscosity coefficient, and qleakis the emis-
sion.  

Given that the HUG is a UG with propellers and a rudder 
applied to the existing underwater gliders, the following 
propulsion factor must be considered when the propeller is in 
operation.  Further, each factor is represented by the external 
force applied to the axial and moment components of the hull ow-
ing to rotation and can be expressed in Equation 6 (Fossen, 1994). 
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Equation 6 is the coefficient for forward propulsion of the 
HUG.  𝑇ா is a coefficient with time, δr is the angular velocity 
of the rudder, and δ𝑟௫ is the maximum angular velocity of 
the rudder.  The six-DOF equation, including the HUG’s hy-
drodynamics force, is the same as Equations 7~12 (Prestero, 
2001; Bhatta and Leonard, 2008; Fossen et al., 2008). 
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The principal hydrodynamic coefficients used in Equations 
(7)~(12) are obtained from the experiment PMM, CFD analy-
sis, and empirical equations (de Wit et al., 2000; Graver and 
Leonard, 2001; Seo et al., 2008). 

1.2  HUG Control Algorithm 
HUG uses propulsion methods that use buoyancy or propel-

lant depending on the mission.  Therefore, a variable control 
method is needed to adapt to different propulsion modes, and 
to this end, the neural network PID control algorithm is applied. 

 
Fig. 7.  Neural network PID control algorithm 

 
 
This controller regulates the buoyancy control device and 

attitude control device to adjust the hull angle when the HUG 
moves (Jeong et al., 2019). 

The three inputs in Fig. 7 are error values, error integral val-
ues, and differential values, which are used as the basis for the 
control algorithm of the PID, and the control inputs are each 
entered into the nonlinear active function, the hyperbolic tan-
gent function.  This controller is a single layer that ignores the 
gradient vanishing and uses a hyperbolic tangent function that 
is faster than the sigmoid function for the rapid response of the 
conventional controller.  The hyperbolic tangent function and 
signal sum (t) input to the function are shown in Equation 13. 

In this equation, refሺtሻ is the desired target, and 𝑚(𝑡) is the 
current measured value. 
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Equation (14) is the final equation for calculating the gain 
of the neural network PID, and the controller calculates the 
gain until the final value is within the set target range. 

At this time, if the error is appropriately reduced and a spe-
cific range of control performance is satisfied for the stability 
of the system, the operation is stopped. 
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Fig. 8.  Movement of the HUG in water 

 
 

 
Fig. 9.  Surface ocean current direction data 

(http://khoa.go.kr/koofs/eng/Observation / obs_real.do) 
 
 

II.  NAVIGATION ALGORITHM OF THE HUG 
BY EXTERNAL FORCE 

Unlike conventional AUVs, hybrid underwater gliders do 
not use navigational sensors that consume much energy, such 
as DVL and USBL.  The HUG calculates the heading angle to 
the next point of travel using AHRS and uses GPS to locate 
itself on the surface of the water and travels straight.  Therefore, 
it is vulnerable to external forces, which is a significant cause 
of navigation error of all equipment of UGs.  To reduce navi-
gation errors, the HUG classifies the flow of tidal currents in 
the ocean surface (0~20 m) and shallow water (20~200 m) into 
individual disturbances that affect navigation errors.  

1  Analysis of the Underwater Environment 
The purpose of categorizing the effects of ocean currents in 

water is that the surface ocean currents are affected by wind, 
and the currents in shallow waters are affected by seawater cir-
culation.  

Surface ocean currents can be obtained using information 
from the Korea Hydrographic and Oceanographic Agency, as 
shown in Fig. 9. 

However, shallow water current data from seawater 
circulation are inaccurate.  Therefore, the angle error 
data for learning are collected using the heading angle  

 
Fig. 10.  Location indirect measuring method of the HUG 

 
 

and AOA data of the HUG while moving because the previous 
movement data contain disturbances. 

2  The position measurement method of the HUG 
The HUG cannot measure its position directly owing to the 

simplicity of the navigation sensors.  Therefore, the heading 
angles of the HUG, AOA, and depth information are used to 
calculate the position indirectly. 

To measure the position of the HUG, first, the relationship 
between the body-fixed coordinates and earth-fixed coordi-
nates is expressed using the angle of the hull and the accelera-
tion.  For this, heading and attitude sensors must be attached 
in the glider. 
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By integrating the converted angular velocity, the position 
of the HUG is indirectly measured by using the HUG’s fuse-
lage angle, motion model, depth, and GPS data.  Based on this, 
the existing HUG location measurement method is shown in 
Fig. 10. 

 

/ tan

sin

Depth Data

angle of attack

heading angle

Depth Data

x HUG
HUG

y x
HUG

z HUG

θ
θ

ψ
ψ

=

=

= ∗
=

=

 (16) 

III. NAVIGATION ALGORITHM FOR THE HUG 
USING MACHINE LEARNING 

For the navigation of the HUG, a line of sight (LOS) method 
line based on the calculated heading angle was used [3].  It 
does not make a separate turn during operation to minimize  
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Fig. 11.  Moving method of the HUG using LOS 

 
 

 
Fig. 12.  Study model using machine learning 

 
 

energy consumption.  Therefore, the heading angle for the 
movement is calculated by learning the driving data (heading 
angle, depth, X, Y), including the previous disturbance, and 
adding the data derived from the learning result to the position 
of the rudder calculated by the LOS when moving to the next 
position. 

1. LOS algorithm to determine the moving direction of 
HUG 
In general, navigation algorithms used in underwater glid-

ers are target point tracking and driving in a specific direction. 
This is called LOS.  The HUG used in this study also uses this 
method as the basic navigation algorithm.  The target point es-
timating technique is to let the UG drive toward the target point, 
as shown in Figure 11, and to move to the next target point 
when entering the target point determination area. 

The algorithm of LOS can be represented by the following 
equation. 

 

[ ] [ ]
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In Equation 17, ሾX(t),Y(T)ሿ is the position of the unmanned 
UG and ሾXk,Ykሿ  is the position of the waypoint.  Also, ρc rep-
resents the radius of the waypoint.  Using this algorithm, the 
rudder angle is calculated and based on this, the direction of 
the HUG is determined. 

2.  HUG Navigation Algorithm using Machine Learning 
To combine the estimates using a machine learning algo-

rithm with the conventional LOS navigation algorithm, the es-
timates are computed by learning the movement data, includ-
ing the previous disturbance.  The data used for learning is the 
information from the saved dataset of the previous HUG.  Here, 
the dataset is data that stores the previous heading angle (𝑥ଵ), 
position X (x2), position Y (x3), and depth (x4).  It also reduces 
the cost function by using the difference between the heading 
angle of the previously measured HUG and the value calcu-
lated using the LOS algorithm. 

In the total of the stored dataset, 80% was used as training 
data and 20% as test data, and standardization was used to re-
move the scale difference of the previous data.  
Equation 18 of standardization is as follows. 

 new
xx μ

σ
−=  (18) 

In the above equation, 𝑥௪ is standardized data, x is the 
value of each element, 𝜇 is the mean, and 𝜎 is the standard de-
viation.  Besides, regularization is used as a method to reduce 
the complexity of the model to solve the overfilling problem 
of machine learning.  The equation of regularization is as fol-
lows:  

 ( ) 2 21 ( )i i
i

Wx b y W
n

λ= + − +   (19) 

 
Equation 19 simplifies the cost function by adding the reg-

ularization strength (λ) and the square of the weight (W) to the 
cost function.  Using this method, a machine learning algo-
rithm is constructed, as shown in Fig. 12. 

Leaky ReLU was used to prevent gradient vanishing and 
dying ReLU owing to the possibility of differential value loss 
during gradient backpropagation.  In the algorithm of Fig. 12, 
the hypothesis and cost functions are as follows. 
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The proposed HUG navigation algorithm improves the pre-
cision of the model-based HUG navigation by combining the 
estimated results using machine learning with the indirect po-
sition measurement method, which is the navigation algorithm 
of an underwater glider.  This method is designed to achieve  
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Fig. 13.  Navigation algorithm of the HUG using machine learning 
 
 

 
Fig. 14.  Simulator of HUG 

 
 

better performance by adapting to the variable ocean environ-
ment and can improve stability by applying two algorithms 
properly.  The HUG navigation algorithm is shown in Fig. 13. 

IV. SIMULATION AND PERFORMANCE 
RESULTS OF  HUG 

In order to verify the validity of the control and navigation 
algorithm, a dynamics simulator using MATLAB-Simulink 
was designed, as shown in Fig. 14.  The simulator includes a 
six-DOF kinematics equation, hydrodynamic force, neural net-
work PID controller, and navigation algorithm.  The designed 
simulator was used to simulate the movement of the HUG.  

The simulation uses buoyancy control on the HUG to move 
up and down underwater.  At this time, it moves forward by 
using the generated thrust.  The sliding angle is controlled by 
moving the battery during the movement.  Based on this, a 
simulation of the navigation system and control system of the 
HUG was designed. 

1. Performance of the HUG motion model and controller 
simulation results 
First, the simulation of motion performance was conducted  

Table 1. Simulation conditions of motion performance 
Index Value 

Moving depth 0~20 m 
Parallel forward speed 2 knot 

Sampling time 0.01 (sec) 
Density of seawater 1.031 g/cm³ 

 
 

 
Fig. 15 Neural Network PID gain and simple PID 

 
 

to verify the performance of the motion model and controller 
before verifying the navigation of the HUG.  The simulation 
conditions for verifying motion performance are shown in Ta-
ble 1. 

The main function of the HUG’s attitude control algorithm 
is to adjust the gain appropriately to the surroundings to 
achieve better performance.  It also makes a good movement 
with less energy consumption.  Fig. 15 shows the gain of the 
neural network PID controller and a simple PID controller.  
The initial gain of the simple PID controller and the neural net-
work PID controller is equal, but the gain is continually chang-
ing owing to changes and disturbances in the propulsion sys-
tem. 

Based on the attitude control algorithm of the HUG, the 
same result as that shown in Fig. 16 was obtained. 

The graph shows the result of the posture control action un-
der the condition of propulsion changes.  In Fig. 16 (a), the 
trajectory graph of neural network PID clearly shows the per-
formance improvement in the transient response control.  Fig. 
16 (b) shows the moving hull speed along the trajectory of Fig. 
16 (a).  Finally, Fig. 16 (c) shows the sliding angle of the hull 
at this time. 
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Fig. 16.  (a) Trajectory of the HUG (X-Z),  (b) Speed of HUG, (c) Angle of 

the HUG 
 
 
The simulation results show that the neural network PID al-

gorithm is more stable than the simple PID controller with a 
fixed gain when the propulsion method is changed.  The com-
parison result is based on the largest error value.  Unlike the 
simple PID controller, the overshoot error of the fuselage’s 
AOA was reduced by approximately 23%, and the conver-
gence speed to the control value was calculated to be 1.2 sec 
or less, which was faster than the simple PID algorithm with 
2.6 sec.  The motion simulation data were summarized in Table 
2 for a simple comparison of the above results. 

In Table 2, the smaller numbers of the piston movement of 
the buoyancy controller and mass movement of posture con-
troller data indicate that neural network PID control reduces 
energy consumption. 

2. Machine learning navigation algorithm simulation re-
sults 
Based on the designed simulation, the navigation results of 

the HUG using the machine learning algorithm are shown in 
Fig. 17.  The current data of the sea level used in the simulation 
were obtained from the Korea Hydrographic and Oceano-
graphic Agency (KHOA) data and used in each step using the 
MATLAB-Simulink data storage block and applied to the  

Table 2. Motion simulation result 

 neural network 
PID simple PID 

Maximum 
overshoot 

Position of 
body 1.47 (%OS) 6.28 (%OS) 

Posture of 
body 1.96 (%OS) 7.41 (%OS) 

settling time 
(2% of designed value) 1.2 (sec) 2.6 (sec) 

Piston movement using 
buoyancy controller   0.8–1.4 (cm) 4.3–5.7 (cm) 

Mass movement using 
posture controller     1.3–1.8 (cm) 2.8–4.3 (cm) 

 
 

Table 3. Simulation conditions of navigation performance 
Index Value 

Moving depth 0–20 m 
Sampling time 0.01 (sec) 

Sensor data update rate 100 Hz 
Density of seawater 1.031 g/cm³ 

Surface ocean 
currents 

From http://khoa.go.kr/koofs/eng/ 
Observation / obs_real.do. 

Waypoint 
Way point_1(40,30) 
Way point_2(100,80) 
Way point_3(200,50) 

 
 

HUG’s equation of motion.  The shallow sea current data were 
generated using the basic fluid flow model provided by the 
Delft-3D program.  

The simulation conditions for verifying navigation perfor-
mance are shown in Table 3. 

Fig. 17 shows the 3D trajectory of Fig. 18.  The trajectory 
of data learning navigation using machine learning is repre-
sented by “ML Navigation,” the conventional navigation algo-
rithm is described by “LOS Navigation,” and the planned tra-
jectory is represented by the “desired trajectory.”  Fig. 18 
shows a similar performance at the previous waypoint, but 
“ML Navigation,” shows better performance after the second-
way point tracking. 

By learning the information including the disturbance of the 
previous two points, this data was applied to the heading angle 
calculation when moving to the next location, and simulations 
of the same environment resulted in a higher precision of 17% 
compared to the existing UG navigation. 

V.  CONCLUSIONS 
In this study, a new trial of application of the machine learn-

ing algorithm composed of three layers to the navigation of the 
underwater glider was performed to improve the navigation 
performance.  The proposed algorithm predicts the next data  
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Fig. 17 Navigation simulation results of the HUG (X-Y) 

 
 

 
Fig. 18  Navigation simulation results of the HUG 3D (X-Y-Z) 

 
 

by learning the present navigation data of the HUG, including 
the previous disturbance, and they are used to next the naviga-
tion of the HUG.  Further, a method for improving the naviga-
tion precision of the UG using limited navigation sensors is 
proposed. 

In order to show the performance of the machine learning 
algorithm, the dynamic model of the HUG was designed.  The 
learning algorithm using multiple layers of the HUG naviga-
tion was applied to the simulation.  In the machine learning 
algorithm, the Leaky ReLU activation function was used to 
solve the problems of gradient vanishing and dying ReLU.  
The learning model was designed by changing the number of 
floors empirically to improve learning efficiency.  Also, the 
data were stably processed using standardization of the input 
data to obtain smooth learning results, and the regularization 
technique was used to address overfitting.  

Finally, the proposed navigation simulation showed a 17% 
higher position accuracy than the conventional LOS naviga-
tion algorithm by using the proposed machine learning algo-
rithm. 

In the future, based on these results, further study will be 

conducted by applying the machine learning algorithm to the 
HUG navigation experiment. 
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