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ABSTRACT 

Under the sun insolation in the daytime, the Maximum 
Power Point Tracking (MPPT) technique is usually used to 
achieve the maximum power in the photovoltaic (PV) system 
and often implemented by the Perturbation and Observation 
(P&O) method.  However, due to the use of fixed step size, the 
P&O method will generate undesired oscillation around the 
maximum power point (MPP) and thus reduce the tracking ef-
ficiency.  Besides, the output power of PV modules highly de-
pends on the environment factors such as irradiance and tem-
perature, especially for a PV array, which is formed by PV 
modules connected in series and parallel.  The partially shaded 
effect would easily happen in a PV array due to clouds, build-
ings, trees, etc.  Due to the partially shaded effect, the charac-
teristic P-V curve of a PV array may possess multi-peaks, 
which often results in tracking of a local maximum, not the 
expected global maximum.  To deal with the partially shaded 
effect, this paper proposes a Reinforcement Learning based 
MPPT method, which is implemented by Q-learning method.  
Demonstrated by numerical simulation results, the proposed 
method indeed can track the global MPP faster and more pre-
cisely without oscillation.  

I. INTRODUCTION 

Since the rapid development of technology, the demand of 
energy has been increasing.  However, because of the air pol-
lution and the global warming problems, the sustainable en-
ergy has become a crucial issue recently.  Therefore, solar en-
ergy is a great renewable energy source without producing 

greenhouse gases and air pollution.  Under the improvement 
of semi-conductor research, the power conversion efficiency 
of photovoltaic (PV) system has been increasing.  In order to 
achieve the maximum power under any environmental condi-
tion, the Maximum Power Point Tracking (MPPT) techniques 
based on the switching converter have been widely used.   

On the other hand, the partially shaded condition usually 
happens when the area of PV array is large because some part 
of the PV array would be shaded by the clouds, trees, building, 
etc.  In that case, the characteristic P-V curve of the PV array 
would change from single peak to multipeaks, which is diffi-
cult to track the MPP.  The traditional MPPT techniques such 
as the perturbation and observation method (P&O), constant 
voltage method, incremental conductance method would let 
the operating point stagnate at the local MPP instead of global 
MPP, which result in unnecessary power loss.  Thus, the par-
tially shaded(Mohapatra et al., 2017)  condition is one of the 
most important problems in MPPT techniques.    

P&O method is the most popular model-free MPPT method, 
but the fixed size perturbation would cause the undesired os-
cillation or slow tracking speed, so many different adaptive 
P&O methods(Elgendy et al., 2011; Zainuri et al., 2012; 
Kollimalla et al., 2014) are developed to change the perturba-
tion size according to the environment changes.  On the other 
hand, many researchers also used sliding mode control(Bian-
coni et al., 2012; Levron and Shmilovitz, 2013; Pradhan and 
Subudhi, 2015), fuzzy logic control(Cheikh et al., 2007; Al 
Nabulsi and Dhaouadi, 2012; Algazar et al., 2012) in MPPT, 
but the selection of parameters and the design of controllers 
are too difficult to implement.  In order to achieve the global 
MPP in partially shaded conditions, lots of online learning 
methods are proposed such as Particle Swarm Optimization 
(PSO) (Miyatake et al., 2011; Renaudineau et al., 2014; Yang 
et al., 2018), which randomly produces several particles to rep-
resent operating voltage, and update the particles after every 
iteration according to the difference of power and random co-
efficients.  Moreover, lots of machine learning methods de-
rived from PSO are used to improve the performance of PSO 
such as Whale Optimization(Kumar et al., 2017; Gupta and 
Saurabh, 2017) and Grey Wolf Optimization (Mohanty et al., 
2015; Cherukuri and Rayapudi, 2017).  However, these online  
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Fig. 1.  Single diode solar cell model 

 
 

 
Fig. 2.  The structure of the PV array 

 
 

learning methods have to seek the MPP again whenever the 
environment changes, so the tracking speed is too slow, which 
would decrease the efficiency.  On the other hand, some offline 
learning method like artificial neural network(Ramaprabha et 
al., 2009; Messalti et al., 2015; El-Helw et al., 2017) is pro-
posed to increase the tracking speed, but it cannot track to the 
MPP precisely.  

Reinforcement Learning (RL) based MPPT (Hsu et al., 
2015; Youssef et al., 2016; Kofinas et al., 2017; Chou et al., 
2019) is a suitable model-free method to solve the problems 
which need precise control and faster tracking ability.  There-
fore, this paper first proposed a Reinforcement Learning based 
MPPT under partially shaded condition by selecting the volt-
age and current of each module as the state to distinguish the 
partially shaded conditions.  At first, this paper would intro-
duce the model of PV array and the description of partially 
shaded conditions in Section II.  And then the Reinforcement 
Learning based MPPT method is described in Section III.  In 
Section IV, the simulation and implementation results would 
show the comparison of traditional P&O method and the pro-
posed method to prove the performance.  Finally, Section V 
presents the conclusions. 

 
Fig. 3.  (a) P-V curve in unshaded condition (b) P-V curve in partially 

shaded condition 

 

 

II. MODELING OF THE PV ARRAY 

1. The Mathematical Model of PV Module 

A PV module is made up of solar cells, which are connected 
with each other in series or parallel, and the single-diode 
model(Humada et al., 2016) is often chosen for its simplicity 
and high efficiency in computation.  Fig.1 illustrates the equiv-
alent circuit of the single-diode model with PV current Iph, di-
ode current ID, output current I, output voltage V, series resistor 
Rs and shunt resistor Rsh.  

According to Kirchhoff’s current law, the output current of 
a solar cell can be decomposed as 

 Dph shI I I I    (1) 

Where 

 [ ( )]
1000ph sc r

S
I I R T T     (2) 
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 (3) 

Note that where I0 is the diode saturation current, Vt is the ther-
mal voltage, q is the charge of an electron, k is the Boltzmann 
constant, η is the diode ideality factor, T is the temperature of 
solar panel, S is the environment irradiance, Isc is the short cir-
cuit current, R is the temperature coefficient and Tr is the ref-
erence temperature 25 °C. 

2. The PV Arrays and Partially Shaded Conditions 

The structure of a PV array is a series and parallel combi-
nation of several modules, and Fig.2 shows an example of PV 
array with Ns×Np PV modules.  Because of the shadows caused 
by buildings, trees or clouds, some parts of PV array may re-
ceive direct irradiance, while others may be shaded.  Since the 
shaded modules generate less current than unshaded ones and 
the PV modules are connected in series, we have to add a by-
pass diode Dby to each PV module in parallel to prevent the 
shaded modules acting as resistive load and hotspot effect.  On  
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Fig. 4.  The backup diagram in MDP 

 
 

the other hand, several strings are connected in parallel and a 
shaded string would provide less voltage than unshaded ones, 
so we have to connect a blocked diode Dbl to each string to 
prevent reverse current. 

After adding the bypass diodes and blocked diodes, the 
characteristic P-V curve of the PV array is changed into a 
multi-peak curve that may have several local maximum and 
one global maximum.  Fig.3 shows the same PV array in dif-
ferent conditions, where (a) shows the PV curve in the un-
shaded conditions and (b) shows the PV curve in the partially 
shaded condition. 

III. THE PROPOSED METHOD 

1. Introduction of Reinforcement Learning 

Reinforcement Learning (RL) (Sutton and Barto, 2018) is a 
trial and error method, which can allow an innocent agent to 
learn a policy to approach the goal.  The learning principles 
and processes are similar to human learning.  

RL is a kind of unsupervised learning that only uses the re-
ward signal to enable agents to learn the policy.  First, the dif-
ferent conditions of the environment can be divided into many 
states.  When facing an unknown environment, the agent can 
first interact with it randomly and then record the reward feed-
back signal.  The reward signal provides a mechanism to de-
termine whether the action taken under certain conditions is 
“good” or “bad”.  The actions leading to better outcomes have 
larger reward which would be reinforced in the future, while 
the actions that lead to worse outcomes may be weakened.  Af-
ter many times of learning, the agent can learn a policy of per-
forming which action is the best in different states to achieve 
the goal.  All RL problems can be described as the Markov 
Decision Process (MDP)(Bellman, 1957), which provides a 
framework model to solve problems systematically. 

The fundamental concept of Markov properties is that fu-
ture states depend only on the current state.  The MDP is com-
posed of {S, A, P, R, γ}, where S is the representation of the 
finite set of states and A is the set of available actions that the 
agent can take.  P is the state transition model that describes 
how the state changes to the next state after an action is exe-

cuted.  For example, 
a

ss'P  is the probability of transitioning  

 
Fig. 5.  The diagram of choosing action following the policy 

 
 

from state s to state s’ after executing action a, and it also can 
be denoted as (4).  The state transition model satisfies the Mar-
kov properties as shown in (5), 

 1[  | , ]a
ss' t t tP P S s' S s A a      (4) 

 1 1[  | ...] [  | , ]t t t t-1 t-1 t-2 t-2 t t tP S S ,A ,S ,A ,S ,A , P S S A    (5) 

R is the reward function that defines the rewards received by 
the agent.  For example, a

sR  is the reward that the agent would 

receive when applying action a in state s as shown 

 1[ | , ]a
s t t tR E R S s A a    (6) 

where γ is the discount factor [0,1]  , which is used to cal-

culate the discount reward. 
The backup diagram in MDP is depicted in Fig.4, which 

shows the interaction between states and actions, where the top 
white dot is a state St and the black dots connected to it are all 
available actions .tA   The white dots connected to the black 

point are all possible state St after doing action ,tA  and the 

black points connected to each white points above are all avail-
able actions in state St+1.  

The policy π is the rule that regulates the agent to take ac-
tions.  A policy can be seen as a mapping from state s to action 
a, so it is the distribution over the action a given the state s as 
written in (7).  Thus, the sum of the probabilities for each fea-
sible actions in any state will be equal to one as below 

 
( | )

( | ) 1
n

a a s

a s







  (7) 

For example, as illustrated in Fig.5, in state s, there are two 
available actions, and according to the policy π, the probability 
of executing action a1 and a2 are π(a1 | s) and π(a2 | s), respec-
tively.  The goal of RL is to let the agent learn the optimal pol-
icy π to choose the best action in any state. 
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Fig. 6.  The interaction between the agent and the environment 

 
 
There are 5 main elements of RL, and they would be dis-

cussed in detail as below: 

A. Reward 
Reward R(t) is a scalar feedback from the environment, 

which represents how well the agent did at time step t. Re-
wards may be delayed transmitting from the environment be-
cause sometimes we can not judge whether the results are good 
or bad right after taking an action.  We may need more time to 
judge the results by calculating the cumulated reward.  There-
fore, the expected return Gt is defined as the cumulated dis-
count reward that the agent expects to receive, as shown below 

 2
1 2 3 1

0

k
t t t t t k

k

G R R R R  


    


      (8) 

The discount factor γ is a scalar constant between 0 and 1 to 
prevent infinite accumulation of rewards.  If the discount fac-
tor γ is closer to 1, the agent may be more far-sighted and more 
care about future rewards.  While the discount factor is closer 
to zero, the agent may focus more on the instant rewards.  Be-
sides, the expected return can be written in an iterative form, 
as shown below:  

 

2 3
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1 +1
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


  (9) 

The goal of the agent is to maximize the expected return. 

B. State 
State S(t) is the representation of the environment condi-

tions and the basis of sending rewards R(t) and observations 
O(t) signal.  Due to the difference of the observability, the en-
vironment can be divided into full observability and partial ob-
servability.  Full observability means that the agent can di-
rectly observe the environment state, while partial observabil-
ity means the agent only can observe some part of parameters 
of the environment.  State S(t) is the function of the history 
H(t), which is the sequence of the observations O, actions A, 
rewards R as shown in (10).  The history is very important be-
cause it can decide what happen next. 

 1 1 1 2 2 2 1( ) { , , , , , , , }

( )  ( ( ))
tH t O A R O A R A

S t f H t





 (10) 

In many cases, the observation can be seen as the state for the 
agent.  

We can define the state as Markov state if and only if the 
state satisfy the condition that the next state St+1 only depends 
on the current state St as shown below 

 1 1[  | ] [  | ]t t t 1 2 tP S S P S S ,S ,......S   (11) 

Markov state is the summary of the history because it has the 
sufficient information to determine the future. 

C. Action 
The agent can perform actions to the environment based on 

the state.  According to the different methods to select action, 
the strategies can be classified into policy-based and value-
based.  The policy-based approach is choosing the action di-
rectly such as policy gradient method, while the value based 
method is selecting the action based on the value function such 
as Q-learning(Watkins, 1992). 

D. Agent  
The agent is a character to learn a policy to achieve the goal.  

It has two main functions.  First, it can receive the state and 
reward signals transmitted from the environment.  Second, it 
would follow the policy to take action based on the state and 
reward.  The agent only can observe the state and reward pas-
sively, rather than changing the reward or state.   

E. Environment  
The environment is an unknown system that only can re-

sponse the reward Rt and state St to the agent after the agent 
takes an action At.  The interaction between the agent and the 
environment is illustrated in Fig.6. 

The value functions are used to determine whether actions 
or states are good or bad, so there are action-value function and 
state-value function in MDP.  The state-value function vπ(s) is 
the expected return from the state s following the policy π, as 
shown below: 

 ( ) = E [  | = ]t tv s G S s   (12) 

If the state-value is higher, then the expected return of the state 
s is higher and better.  When we want to calculate the expected 
return Gt, it does not need to wait after all timer stop.  The 
Bellman equation is introduced to solve the value function. 
First, we combine (9) and (12), and then we can get an iterative 
form of vπ(s) 

 
1( ) = E [  | = ]

        = E [ ( ) | = ]
t t t

t t

v s R G S s

R v s' S s
 

 







 (13) 

where Rt is the immediate reward at t and s'  is the state at next  
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Table I  example of Q-table  

 
 
time step t+1.  Consequently, we can use the immediate reward 
Rt and the state-value vπ(s’) at the next time step t+1 to calcu-
late the state-value vπ(s) at the current time t. 

The action value function ( , )q s a   is the expected return 
with choosing action a in the state s following the policy π as 
(14). 

 ( , ) = E [  | = , ]t t tq s a G S s A a    (14) 

Similarly, we can use the iterative form to solve the Bellman 
equation in (15).  

 
1( , ) E [  | = , ]

           = E [ ( , ) | = ]
t t t t

t t

q s a R G S s A a

R q s' a' S s
 

 




  


 (15) 

After taking all possible states and actions into consideration, 
the state-value function can be rewritten as the sum of all pos-
sible action-values following the policy π in (16).  

 
 A

( ) ( | = ) ( , )t
a

v s a S s q s a 


   (16) 

Then the action-value function ( , )q s a  can also be derived as 
(17). 

 1
 

( , ) + [ | = , ] ( )t t t t
s' S

q s a R P S s' S s A a v s'  


    (17) 

After calculating the value function, the spirit of the RL is to 
find an optimal policy to maximize the expected return.  The 
optimal policy π always exist when the policy π satisfies the 
condition that it is not worse than the other policies π’, which 
can be written as π ≥ π’ if and only if ( , )q s a  ≥ ' ( , )q s a .  Ac-
cording to the optimal policy, we can get the optimal action-
value function * ( , )q s a


, which is defined as the maximum ac-

tion-value in the action list of the state s.  So the optimal ac-
tion-value function can be described as below:  

 

*

*

( , ) max ( , )

            = E [ max ( , ) | = , = ]t t t

q s a q s a

R q s' a' S s A a

 

 





 (18) 

where * ( ', ')q s a


  is the optimal action-value in next state 's  
when the optimal action 'a  is performed.  The backup diagram 

 
Fig. 7.  The backup diagram of optimal policy 

 
 
of the optimal policy is shown in yellow route in Fig.7, where 
the arc between the action a and a’ are represented to choose 
the maximum value as the optimal action.  The agent would 
choose the optimal action in any state to maximize the ex-
pected return.  

2. Q-Learning 

Q-learning (Minh et al., 2015) is a value-based RL method. 
First, the agent would construct a Q-table, which is a tabular 
form of the action-value function by storing individual action-
values in each state. For example, Table I shows an example 
of Q-table with 3 states and 3 actions, where the columns (s1~s3) 
represent different states and the rows (a1~a3) are different ac-
tions.  The values stored in the Q-table are the action-value of 
the action under the certain state.  Suppose that when the envi-
ronment is in state s1, the optimal action a1 is taken and the 
state transfers to s2.  In Q-learning, the optimal action-value is 
used to represent the state-value, also called state Q value in 
Q-learning, as shown below 

 ( ) max ( , )
a

Q s Q s a  (19) 

The value Q(s1, a1) is the estimate state Q value of the state s2, 
but the target state Q value is the expected return in state s2, 
which can be written as R+γQ(s2).  Thus, the purpose of Q-
learning is to minimize the difference between the estimate 
state Q value and the target state Q value, so the update algo-
rithm of the Q-table can be shown as 

 ( ) ( ) *[ max ( , ) ( , )]Q s,a Q s,a R Q s' a' Q s a      (20) 

where α is the learning rate and maxQ(s’,a’) is the optimal ac-
tion value in state s’. 

Reinforcement learning can balance the exploration and ex-
ploitation by using ε-greedy.  There are ε probability to take 
the optimal action, and 1   probability to choose action ran-
domly.  By doing so, when taking the optimal action, the agent 
can reinforce the action, and when taking action randomly, the 
agent can explore other possible way to achieve the goal.  The  

 a1 a2 a3 

s1 Q(s1, a1) = 3 Q(s1, a2) = 0 Q(s1, a3) = 1 

s2 Q(s2, a1) = 5 Q(s2, a2) = 7 Q(s2, a3) = 2 

s3 Q(s3, a1) = 4 Q(s3, a2) = 3 Q(s3, a3) = 6 
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Table II  System element selection 

RL Elements MPPT System Corresponding Elements 

Environment PV array and boost converter 

Agent Controller 

State (voltage, current) 

Action D D D   kD D  

Reward rank rank rankP P P    

 
 

 
Fig. 8.  The workflow of Q-learning 

 
 

algorithm of Q-learning is shown in Algorithm 1 and the work-
flow of Q-learning is depicted in Fig.8. 
 

Algorithm1: Q table Q(s, a) 

Initialize Q table Q(s, a) 

Repeat (for each iteration) 

Initialize State s 

Repeat (for each iteration) 
Choose action a from s using policy derived from  
Q(e.g. -greedy) 

Take action a, observe r, s’ 
 ( , ) ( , ) max ( , ) ( , )Q s a Q s a r Q s a Q s a         

s s  

Until s is terminal 

3. The Proposed MPPT System Structure  

The elements of Reinforcement Learning should be corre-
sponded to the MPPT system as shown in Table II.  It is intui-
tive that the PV array connected with the boost converter can 
be seen as the environment and the MPPT controller stands for 
the agent.  Fig.9 illustrates the of proposed structure, which 
constructs 3×2 PV modules as a PV array to verify the Rein-
forcement Learning based MPPT using Q table (RL-QT MPPT) 
algorithm. 

To deal with partially shaded conditions, the voltage of six 
PV modules (VA, VB, VC, VD, VE, VF) and two current(I1, I2) of  

 
Fig. 9.  The Proposed Structure 

 
 

 
Fig. 10.  The flowchart of Q-learning in training phase 

 
 
each string are used as the state parameters.  It is sufficient to 
use the voltage and current as the state parameters because 
they imply the information of shaded and weather condition.  

The agent can receive the voltage and current of the PV ar-
ray and use them as the state parameters to the algorithm.  The 
output of the agent is an action to change the duty cycle.  There 
are adjusting action and jumping action in the action list to 
change the duty cycle.  The adjusting action (D = D±ΔD) is 
designed to track the MPP more precisely, while the jumping 
action (D = Dk) is designed to track the MPP faster and avoids 
being stagnated in the local maximum.  

Originally, the difference of power ΔP is used as the reward, 
but the ΔP around the MPP is much smaller than it in other 
region, which would fail in tracking the MPP or cause unde-
sired steady state oscillation.  As a result, this paper proposed  

Voltage sensor

Current sensor

Boost Converter

Agent

VA

I1

VB

VC

VD

I2

VE

VF

Start

Initialize Q-table, ε, α, γ, sstart

Change the initial state

Randomly choose
action an in state sn

Choose the max Q action
an in state sn

Get initial state
sn = sstart

Get next state sn+1

Calculate Reward
R=P’r - Pr

Uptate the Q table
Q(sn, an) = Q(sn, an)+a{[R + γmaxQ(sn+1)]-Q(sn, an)}

If p>ε

sn=sn+1

step_counter +=1

If step_counter >50

step_counter = 0
sstart = sstart+1

N

NY

Y



 K.-Y. Chou et al.: RL Based MPPT Control of Partially Shaded PV System 439 

Table III  Hardware configuration 

 Hardware Configuration 

PV array 
(3×2 modules) 

Each PV module 
parameters 

(Test in STC : 
I=1000W/s, 

T=25°C) 

Pmax 10 W 

Vmpp 9.00 V 

Impp 1.12 A 

Voc 10.8 V 

Isc 1.23 A 

Dby 1N5408 

Dbl 1N5408 

Agent 
Controller Raspberry Pi 3 Mode B + 

MOSFET Driver TLP250 

Voltage sensor ADS1115 16-bit ADC 

Current sensor ACS723 

Resistive di-
vider 

R1 9 MΩ 

R2 1 MΩ 

R3 5 MΩ 

R4 1 MΩ 

R5 2 MΩ 

R6 1 MΩ 

Boost con-
verter 

L 3.99 mH 

D1 1N5408 

MOSFET IRF840 

Cin 2.09 μF 

Co 60.0 μF 

Ro 100 Ω 

 
 

a method to convert P to a new parameter Pr to calculate re-
ward.  First, rearrange P by the magnitude in each condition 
and assign the order of each P to Pr respectively.  Therefore, 
the reward is defined as ΔPr=Pr - Pr,old.  

The simulation data set including voltage and current of 
each PV array and the duty cycle using different duty cycle 
under different irradiance and shaded conditions are prepared 
before training process.  In the proposed method, the Q-learn-
ing can be divided into training phase and tracking phase. 

In training phase, the initial state sstart, learning rate α, ε-
greedy, discount factor γ would be initialized and the Q-table 
would be set to 0.  Using the ε-greedy technique, with the prob-
ability ε, the agent would take the optimal action with maxi-
mum action value in the Q-table.  Otherwise the agent would 
randomly take action.  After taking an action, the agent can get 
the next state s’ from the simulation data and calculate the re-
ward from the difference of Pr’ and Pr.  According to the next 
state s’ and the reward R, the Q-table can be updated by (20), 
and then the state s would also be transferred to the next state 
s’.  In order to fill the Q table, each state would be set as the 
initial state sstart to train the Q-table for an episode (50 steps), 
so after 50 steps the agent would change to another initial state 
sstart.  Fig.10 show the flowchart of Q-learning in training phase. 

 
Fig. 11.  The flowchart of Q-learning in tracking phase 

 
 

 
Fig. 12.  The control block diagram of the proposed MPPT system 

 
 
In tracking phase, the Q-table is supposed to be trained 

properly.  Therefore, first sense the state parameters to find the 
state in the Q-table and take the optimal action to change the 
duty cycle.  The agent only takes the optimal action without 
updating the Q table in tracking phase.  After several steps, the 
controller can drive the operating point to the MPP success-
fully.  Fig.11 show the flowchart of Q-learning in tracking 
phase. 

The control block diagram of the proposed MPPT system is 
shown in Fig.12.  First, the Q table could calculate the optimal 
action a based on the voltage of six PV modules (VA, VB, VC, 
VD, VE, VF) and two current (I1, I2) measured from the PV array. 
Second, the controller decide the duty cycle D of the PWM 
generator based on the action a.  Finally, the PWM signal is 
generated to control the DC-DC boost converter to track the 
global MPP of the PV array. 

IV. RESULTS 

1. System configuration 

The system configuration of simulation and implementation 
are the same, and the overall hardware structure of the system 
configuration is shown in Fig.13, which contains a PV array, 
two current sensors, two voltage sensors, resistive divider of 
R1~R6, the boost converter and the agent.  The specific circuit  
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Fig. 13.  The hardware structure of the MPPT system 

 
 

 
Fig. 14.  The dynamic shaded condition in simulation, and the gray area 

represent that the PV panel is shaded. 

 
 

selection of the system is shown in Table III.  The PV array is 
constructed by connecting 3 PV modules in series as a string 
and connecting 2 strings in parallel, where the specification of 
each module is also shown in Table III.  The Raspberry Pi 3 
Model B + is used as the controller because of the great arith-
metic capability, but the PWM signal of the GPIO port is not 
sufficient  enough to drive the MOSFET switch of the boost 
converter.  Thus, the MOSFET driver TLP250 is used to en-
hance the current driving capability.  However, there is no 
built-in analog-to-digital converter (ADC) in the Raspberry Pi 
3 Mode B +, so the additional ADS1115 16-bit ADC is re-
quired to measure the analog voltage of the PV array.  In addi-
tion, the current sensor converts the current to an analog volt-
age output, so the value should be converted by the ADC. 
Since the ADS1115’s input range is -4.096 V to +4.096 V, the 
resistive divider is used to reduce the input voltage of the ADC. 
The actual voltage value can be obtained by multiplying the 
quotient of the two series resistors.  Therefore, the resistive di-
vider is designed to be large enough to reduce its impact on the 
system.  

Before the training process, the training data should be pre-
pared.  The training data contain the state parameters (VA, VB, 
VC, I1, VD, VE, VF, I2), the duty cycle D and the output power 
of the PV array under any environment condition, which is ob-
tained by sweeping the duty cycle from 0.25 to 0.95 and the 
level of D is discretized to 0.01 using MATLAB 2017b Sim-
ulink.  The effect of temperature is ignored and set all temper-
ature to 25°C.  The shaded condition is divided into 64 cases, 
depending on the module that is “shaded” or “unshaded”.  The  

Table IV Agent configuration  

 RL-QT MPPT 

D range 0.25~0.95 (71 points in total) 

Irradiance Condition {50,100,150,……,1000} 

Shaded Condition 26(shaded or unshaded) 

Sampling time 1s 

State (VA, VB, VC, VD, VE, VF, I1, I2) 

Action list 

Adjusting 
actions 

D=D+ΔD 
ΔD={0,±0.01,±0.05} 

Jumping 
actions 

D=Dk 
Dk ={0.35,0.55,0.75} 

Reward ΔPrank 

ε 0.7 

γ 0.8 

Q value storing type 
Q-table 

102240*8  (71*20*26) 

α 0.01 

 
 

irradiance of the shaded module is set to 10 W/m2, while the 
irradiance of the unshaded module is divided to 20 cases, 
which is simulated from 50 W/m2 to 1000 W/m2 and the level 
of irradiance is discretized to 50 W/m2.  Therefore, there are 
1280(64*20) cases of the environment conditions, and 90880 
(71*20*26) states in the training data.  The training data should 
be preprocessed first by transforming the actual power P to Pr 
for calculating the reward R.  In the training phase of Q-learn-
ing, after the agent takes an action a, the next state s’ can be 
obtained by searching the next state duty cycle D in the train-
ing data, and the reward R is also calculated by rP  and ,r oldP .  

The experience replay period is set to 10 so that it would be 
performed every 10 steps to sample 50 pieces of data in the 
memory whose size is 5000.  There are 8 actions in the action 
list.  The adjusting actions contain five different ΔD (0, ±0.01, 
±0.05), and the jumping actions include three different Dk 
(0.35, 0.55, 0.75).  In addition, the parameters such as ε, γ and 
α are selected by trial and error methods.  Lastly, the agent 
configuration of the Q-learning is shown in Table IV. 

2. Simulation results 

The performance of the P&O and RL-QT MPPT methods 
are simulated by MATLAB 2017b and Simulink with Intel i7-
8750H, 2.2GHz processor, 8GB RAM and windows 10 oper-
ating system.  The circuit parameters are given in Table V.  Due 
to the partially shaded condition, the multi-peaks of the P-V 
curve would make it difficult to track the MPP by using the 
P&O method.  Therefore, the simulation results of the P&O 
method and RL-QT method under dynamic environment con-
ditions are shown below. 

In dynamic shaded condition, the shaded condition would 
change at t=15s and t=30s as shown in Fig.14.  To verify the  
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Table V Circuit Parameters  

 PV array and boost converter 

PV array 
3 modules in series  

and 2 strings in parallel 

Maximum power 
(each modules) Pmax 

10W 

Open circuit voltage Voc 9.8V 

Short circuit current Isc 1.23A 

Input capacitance 20.8 F  

Input inductance 3.9 H  

Output capacitance 6 F  

Output payload resistance 100Ω 

 
 

 
Fig. 15.  The simulation results of P&O method in dynamic condition 

 
 

efficiency of the proposed RL-QT method in dynamic variation 
of weather and shaded conditions, three different shaded con-
ditions are used which have global MPPs 15.08W, 26.62 W and 
37.4 W respectively. Fig.15 shows the simulation results of the 
P&O method with ΔD=0.05, and the yellow area indicates the 
tracking time and the green area indicates that the algorithm 
fails on tracking the MPP.  It is obvious that during t=15~30s 
the P&O method only tracks the local MPP 20.5W, instead of 
the global MPP 26.65W.  Besides, during t=0~15s and 
t=30~45s, the undesired oscillation around the MPP is 1.73W 
and 4.73W.  However, the simulation result of the proposed 
RL-QT method can track the MPP successfully without any 
oscillation in Fig.16. 

3. Implementation results 

Partially shaded conditions are simulated by covering a 
shading pad as shown in Fig.17, where the shading pad is made 
of the thick cardboard.  The implementation results of the P&O 
method and RL-QT methods are given respectively.  However, 
there is still a little inevitable changing of the irradiance during 
data acquisition, so there is still a little oscillation of power in 
the implementation. 

 
Fig. 16.  The simulation results of RL-QT method in dynamic condition 

 
 

 
Fig. 17  The shaded condition of implementation 

 
 

 
Fig. 18.  The dynamic shaded condition in implementation, and the gray 

area represent that the PV panel is shaded. 

 
 
This implementation case is similar to the simulation case, 

but the irradiance varies with the weather.  The dynamic con-
dition in Fig.18 is used to test the performance of the algorithm 
when the shaded condition changes, and the shaded condition 
would change at t=15s and t=30s.  

Fig.19 and Fig.20 show the implementation results of the 
P&O and RL-QT methods, where the green areas indicate that 
the algorithm failed to track the global MPP and the yellow 
areas represent the tracking stage.  The oscillations of power 
and average power are denoted as ∆P and Pavg, respectively. 
However, since it is actually difficult to control the irradiance 
during a long period of experiment, after the algorithm suc-
ceeds to track the MPP, the operating point still changes with 
the weather condition.  Besides, due to the noise of the ADC, 
there is a little oscillation in the implementation results.  There-
fore, these implementation results are generated under similar 
but different environment conditions. 

Fig.19 is the implementation result of the P&O method,  
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Fig. 19.  The implementation results of P&O method in dynamic condition 

 
 

which shows that the algorithm fails to track the global MPP 
at t=15s and t=30s, because the duty cycle and Pavg are far from 
the results of RL-QT method.  In addition, the oscillation of 
duty cycle is much larger than the RL-QT method.  Fig.20 is 
the implementation result of RL-QT method, which shows that 
the algorithm can track the global MPP successfully all the 
time.  The oscillation during t=15~40s and the rising of power 
at t=37s are caused by the changing of irradiance. 

V. CONCLUSIONS 

In this paper, a Reinforcement learning using Q table based 
maximum power point tracking(RL-QT MPPT) is proposed 
for the PV array under partially shaded condition.  The RL-QT 
MPPT method applies the voltage and current of each PV mod-
ule are used to stand for the states to distinguish the partially 
shaded conditions.  The actions of tracking process are the dif-
ferent ways to control the duty cycle including adjusting ac-
tions and jumping actions.  The jumping actions can move the 
operating point away from the local MPP, while adjusting ac-
tions can track the global MPP more precisely.  The improved 
Pr is used to calculate the reward in Reinforcement learning. 
The Q learning algorithm is implemented on the MPPT system 
by constructing a Q table to store the state and action value.  In 
the tracking phase, the agent choose the action with optimal 
action value to achieve the global MPP.  Further, the numerical 
simulation results obvious show that the proposed RL-QT 
MPPT method can track the MPP faster and more accurate 
without undesired oscillation compared to the traditional P&O 
method under various environmental factors. 
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Fig. 20.  The implementation results of RL-QT method in dynamic condi-

tion. 
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