
Volume 28 Issue 5 Article 12

MOTION AND CONTROL SIMULATION FOR UNDERWATER ROBOTS MOTION AND CONTROL SIMULATION FOR UNDERWATER ROBOTS

Shyh-Kuang Ueng
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan,
skueng@mail.ntou.edu.tw

Chieh-Shih Chou
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Ueng, Shyh-Kuang and Chou, Chieh-Shih (2020) "MOTION AND CONTROL SIMULATION FOR UNDERWATER ROBOTS,"
Journal of Marine Science and Technology: Vol. 28: Iss. 5, Article 12.
DOI: 10.6119/JMST.202010_28(5).0012
Available at: https://jmstt.ntou.edu.tw/journal/vol28/iss5/12

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol28
https://jmstt.ntou.edu.tw/journal/vol28/iss5
https://jmstt.ntou.edu.tw/journal/vol28/iss5/12
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol28%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol28%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol28/iss5/12?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol28%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

422 Journal of Marine Science and Technology, Vol. 28, No. 5, pp. 422-432 (2020)
DOI: 10.6119/JMST.202010_28(5).0012

MOTION AND CONTROL SIMULATION FOR
UNDERWATER ROBOTS

Shyh-Kuang Ueng and Chieh-Shih Chou

Key words: remotely operated vehicles, hydrodynamic motion sim-
ulation, auto-piloting, underwater robots.

ABSTRACT

Remotely Operated Vehicles (ROVs) are widely used in un-
derwater explorations and constructions. When navigating un-
der the sea, the motions and stabilities of ROVs are influenced
by various forces. Operating ROVs to capture images, grasp
samples, avoid obstacles, and examine man-made facilities is
challenging. This paper proposes an innovative simulator to
train users to handle ROVs. Conventional simulators only can
mimic undeformable ROVs. Their educational capabilities are
limited. The proposed simulator is developed based on ad-
vance mathematics models and is able to emulate a ROV
equipped with movable robot arms. Therefore, it can perform
more realistic and meaningful simulations to enhance the train-
ing courses. We deduce a voxel-based method to calculate the
mass properties of the ROV. Thus, the hydrodynamic effects
caused by its robot arms can be calculated in real time. A nu-
merical algorithm is also invented to coordinate the propellers
to produce required forces and moments. Hence, the ROV can
attain specified velocities, positions, and orientations under the
influences of loads, sea currents, and moving robot arms. Fur-
thermore, an artificial intelligence engine is integrated into the
system to perform auto-piloting, auto-balancing, and com-
mand interpretation such that the simulator is more user
friendly. Besides, the system is augmented with an interactive
user interface and a graphics engine to display simulation pro-
gressions and information to increase its usability.

I. INTRODUCTION

A Remotely Operated Vehicle (ROV) is an unmanned un-
derwater vehicle equipped with propellers, cameras, light
sources, sensors, and robot arms. ROVs can navigate and per-
form designated tasks in deep water where human divers are
unable to reach. The applications of ROVs include undersea
constructions, mining, investigation, and monitoring (Manley,

2008). In recent decades, numerous ROVs have been built and
widely used for exploring underwater resources.

However, piloting a ROV to conduct a mission is challeng-
ing. When moving below the sea surface, the motions and sta-
bility of a ROV are affected by various external forces. The
operator has to precisely manipulate the propellers to counter
these influences such that the ROV can move steadily. Fur-
thermore, obstacles and man-made facilities may reside in the
working place. The operator must drive the vehicle with care
to avoid colliding with these objects. In addition to overcom-
ing these hazards, the operator may have to control the robot
arms to grasp samples, tune the lights to illuminate the sur-
roundings, and use the cameras to capture feedback images at
the same time. Obviously, handling a ROV is a multi-tasking
process in nature and requires sophisticated skills. People
should have undertaken intensive training courses before op-
erating ROVs (Christ and Wemli, 2007).

Training users to pilot ROVs by using real facilities is very
expensive and dangerous. Instead, people employ simulators
to fulfill this job. Compared with physical machines, simula-
tors are more convenient and flexible. The trainers can easily
modify the simulation settings to create new subjects for the
students. More importantly, since all exercises are carried out
in virtual worlds, the learners are able to repeatedly practice
each skill with lower costs and less risk. Thus, they will pos-
sess the capabilities to handle ROVs in a short time (Agba,
1995). Besides serving as teaching equipment, simulators
have also been used to study the characteristics of ROVs, ver-
ify control algorithms, and rehearse mission plans to uncover
errors and prevent dangers.

1. Related Work

Many simulators had been constructed to train people to
handle ROVs. Some of them were designed by integrating
hardware and software to improve simulation fidelities (Chris-
tensen et al., 2009; Xu et al., 2016). Nonetheless, the opera-
tional and building costs of these systems are high, and their
flexibilities are limited, compared with pure virtual simulators.
Other researchers developed ROV simulators which could
generate hydrodynamic motions and display simulation pro-
gressions in real time (Fabekovic et al., 2007). The successes
of these software rely on the underlying kinetic models and
graphical display methods, which were not well explained in
the work. A useful simulator should be able to emulate

Paper submitted 01/09/20; revised 05/05/20; accepted 07/07/20. Correspond-
ing Author: Shyh-Kuang Ueng(Email: skueng@mail.ntou.edu.tw)
Department of Computer Science and Engineering, National Taiwan Ocean
University, Keelung, Taiwan

 S-K Ueng et al.: A Simulator for Underwater Robots 423

different kinds of ROVs. In (Kim, 2014), Kim presented a
configurable simulator, which allows users to tune the embed-
ded components to reflect the characteristics of the target ROV.
However, implementation details are absent from his paper.

Some researchers were interested at developing simulators
to evaluate ROV controlling algorithms. In the work of (Lee
et al., 2009), Lee et al. constructed a simulation program to
study ROV control methods. In the experiments given in (Mis-
kovic et al., 2006), a specialized micro-ROV is used for com-
paring auto-piloting methods. Tehrani et al. built a micro-ROV,
which was used as a platform for testing autonomous under-
water vehicles (Tehrani et al., 2010). In the work of (Hsu et
al., 2000), Hsu et al. constructed a small ROV to verify their
auto-position systems. In (De Souza and Maruyama, 2007),
researchers used simulation programs to analyze controlling
algorithms for positioning ROVs under the influences of sea
currents, tension of tethers, and other hydrodynamic forces.
These simulators aim to reveal the properties of ROVs or to
test controlling schemes. They lack visualization capabilities
and user interfaces. Hence, they are unsuitable for job-training.

Modern ROVs are usually equipped with movable robot
arms. Their stabilities and motions are influenced by the
movements of the robot arms. In (Featherstone, 1984; Feath-
erstone, 2014), fast algorithms had been invented to compute
the dynamics and mass inertia of robots fixed at the bases. In
these two researches, a robot is regarded as an articulated body
composing of joints and links. Each joint possesses a degree
of freedom, influenced by the external forces acting on the
links and the internal forces propagating from other joints. At
each time step, the accelerations of the joints are computed
from the base outward to the end joint. Then, the inertias are
updated in a backward manner to simulate motions of the ro-
bots.

2. Research Motivation and Summary

All the aforementioned simulators lack the ability to emu-
late ROVs equipped with moving robot arms. In some of these
systems, their ROVs have no movable part at all. Hence, the
authors did not have to worry about the effects produced by
robot arms. In other simulators, the embedded ROVs do con-
tain robot arms. As the robot arms maneuver, the gravity and
buoyancy centers migrate to new positions. The resulting
buoyance forces will produce torques and rotate the ROVs.
However, these researchers ignored this problem and took no
action to attain the ROVs’ stabilities.

The proposed simulator is developed based on advance hy-
drodynamics models and is able to emulate a ROV equipped
with movable robot arms. It can perform more realistic and
meaningful simulations to enhance the training courses. A
good simulator should be able to calculate all acting forces in
real time. In this work, we develop a voxel-based strategy to
precisely compute the tensor of inertia and the gravity and
buoyancy centers on the fly such that the hydrodynamic forces
created by the moving robot arms can be efficiently computed.

When the moving robot arms cause the ROV to rotate, we

Fig. 1. The virtual ROV resembles a physical machine.

rely on the thrusts of the propellers to keep the ROV in balance.
In the proposed simulator, we design a numerical algorithm to
coordinate the propellers to generate the desired moments to
counter the rotations. Hence, the posture and position of the
ROV can be maintained. In addition, this propeller control al-
gorithm is also utilized to create forces and torques to attain
specified velocities, positions, and orientations for the ROV in
auto-piloting and auto-balancing simulations.

In a ROV simulator, the actuator is responsible for convert-
ing high-level commands into low-level actions. Intrinsic al-
gorithms for implementing the actuator had not been well ex-
plained in the previous work. In this article, the method of
implementing the actuator is also presented. Lacking decent
visual effects and user-friendly interfaces is a common prob-
lem in conventional ROV simulators, since most of these sys-
tems were developed for verifying controlling algorithms and
studying ROV characteristics. To remedy this problem, our
simulator integrates information processing subroutines, inter-
active user interfaces, and graphics display modules to en-
hance its user interface and visual effects.

II. SYSTEM ARCHITECTURE

The proposed ROV simulator is developed based on game
programming paradigm (Gregory, 2017) to improve system in-
tegration and efficiency. It contains a physics engine (Bourg
and Bywalec, 2013), an Artificial Intelligence (AI) engine
(Schwab, 2009), a graphics engine, and a Human Computer
Interaction (HCI) interface. These computational procedures
are used to operate a virtual ROV, which serves as the simula-
tion platform.

1. The Virtual ROV Platform

The virtual ROV resembles a modern underwater robot. It
is composed of a structure frame, a float, five cameras, six
propellers, two light sources, a robot arm, and several water-
proof boxes, which enclose electronic and electrical devices.
The image of the virtual ROV is shown in Fig. 1.

The main camera is mounted in the front face of the frame.

424 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020)

Fig. 2. System architecture of the ROV simulator.

Three extra cameras are located at other sides of the frame to
monitor the surroundings. Another camera is attached to the
robot arm to catch feedback images for operating the robot arm.
The robot arm contains three joins, two links, and one grasper.
In total, it possesses four degrees of freedom. Four horizontal
propellers are mounted at the four bottom corners of the frame,
and two vertical propellers are attached to the left and right
sides of the frame. The propeller blades can rotate clockwise
and counter-clockwise at varying angular speeds to generate
different thrusts. Compared with those virtual ROVs em-
ployed in conventional simulators, our machine is more
realistic and advanced. It is an effective facility for train-
ing users to handle modern ROVs.

2. Architecture of the Simulator

The architecture of the simulator is illustrated in Fig. 2. The
HCI allows users to drive the ROV, control the robot arm, turn
on/off the lights, and manipulate the cameras by using the key-
board, mouse, and joysticks. The HCI also provides a graph-
ical user interface (GUI), which is composed of several menu
systems, widgets, and canvas for function selection, command
input, image display, and data visualization.

The AI engine is responsible for converting users’ commands
and high-level control signals into physical actions for the pro-
pellers, cameras, robot arm, and light sources. The AI engine
also supports auto-piloting and auto-balancing functionali-
ties such that the users can focus on operating the robot arm
without worrying the influences of the sea currents and rota-
tional torques.

Fig. 3. The 3 coordinate systems and 6 DoF motions. The box represents

the ROV.

The physics engine is used to compute mass properties,

forces, and moments during the simulation process. It is also
responsible for calculating accelerations and velocities and
modifying the position and orientation of the ROV. The
graphics engine is employed to render the scene and depict es-
sential information during the simulations. The scene are dis-
played from the view angles of the main camera, the side cam-
eras, the robot arm camera, and a bystander. The information
revealed by the graphics engine include the position, orienta-
tion, speed, and trajectory of the ROV. In auto-piloting and
auto-balancing simulations, this module is utilized to illustrate
the progressions of these processes as well as the variations of
the ROV’s position, orientation, and velocity.

III. MASS PROPERTY COMPUTATION

Since the ROV contains a movable robot arm and other ir-
regular-shaped components, to compute its mass properties in
real time is not easy. Thus, we develop an innovative algo-
rithm to accomplish this goal. In this section, we introduce the
coordinate systems adopted in the proposed simulator at first.
Then, the details of the algorithm are formulated.

1. The Coordinate Systems

The proposed simulator uses three coordinate systems to
specify the underwater scene, model the ROV, and solve kinet-
ics and kinematics equations. Similar approaches were
adopted in the researches of (Ueng et al., 2008; Ueng, 2013).

These three coordinate systems are depicted in Fig. 3. The
world coordinate system is used to specify the undersea scene.
Its X and Z axes span the horizontal plane while its Y axis
points vertically to the sky. The center of the motion coordi-
nate system is located at the gravity center, G. Its Xs axis
points to the bow of the ROV while its Zs axis is directed to the
starboard. The origin of the body coordinate system resides on
the lower right corner of the rear face of the bounding box
(BBox). Its three axes are parallel to the faces of the BBox. The
body and the motion coordinate systems share the same axes.

The body coordinate system is utilized to model the ROV.
The gravity and buoyance enters are designated in this space.

Users

Images,
information

Position
orientation

Position
orientation

Terrain
geometry

Motions

Control
signals

Graphics engine

Virtual ROV Physics engine

Undersea scene

AI engine

HCI/GUI interface

Commands

Y

Z

O X

Heave

Surge

Sway

Yb

Xb

Zb

Zs

P

G
Roll

Xs

ys
Yaw

Pitch

 S-K Ueng et al.: A Simulator for Underwater Robots 425

Fig. 4. Voxelization of the float.

Fig. 5. The four super-voxels, which constitute the main body and the

links of the robot arm.

Positions of fixed components in the ROV are invariant in the
body coordinate system when the ROV moves. Motions of the
ROV are specified in the motion coordinate system. Surge,
heave, and sway are translate motions along the Xs, Ys, and Zs
axes. Roll, yaw, and pitch are rotations about these axes.
Forces and moments acting on the ROV are calculated in this
space. Accelerations, velocities, and motions are also com-
puted there. The resultant motions are transformed to the
world space to update the position and gesture of the ROV.

2. Voxelization and Mass Property Computation

Before initiating the simulation procedure, some mass prop-
erties of the ROV have to be calculated. These data include
the gravity center G, the buoyancy center B, the mass and ten-
sor of inertia of the ROV. The volume of the ROV is essential
for computing the buoyance force and is also computed at this
stage.

In this work, we propose a voxel-based method to estimate
these mass properties. At first, all the parts of the ROV are
decomposed into equal-sized cubes. In literatures, these cubes
are called voxels (Huang et al., 1998). Then the mass of each
voxel is determined according to the constituting material. An
example of the voxelization process is shown in Fig. 4. The
original float and its voxelization results are displayed in the
left and right images respectively.

After the voxelization process, the mass and volume of the
ROV are obtained by integrating the masses and volumes of
the voxels. The gravity and buoyancy centers are computed
by using the following equations:

, .i i i i

i i

m r v r
G B

m v
  
  (1)

Where mi, ri, and vi are the mass, position, and volume of the
i-th voxel.

Then the tensor of inertia I is computed by using the formu-
las listed below:

   
 

2 2 2 2

2 2

, ,

,

, , .

.

xx i i i yy i i i

zz i i i

xy i i i xz i i i yz i i i

xx xy xz

xy yy yz

xz yz zz

I y z m I x z m

I x y m

I x y m I x z m I y z m

I I I

I I I I

I I I

   

 

  

  
 

   
   

 

   (2)

Where xi, yi, and zi are the coordinates of the i-th voxel in the
motion coordinate system. In this work, the tensor of inertia
is computed about G and the axes of the motion coordinate
system.

3. Super-voxels and Run-time Mass Property Updating

As the robot arm moves, G and B change. Their positions
and the tensor of inertia have to be recomputed. If we use
Equations (1) and (2) to update these parameters, it would be
too slow for a real-time simulation. Instead, we adopt the par-
allel-axis and parallel-plane theorems given in (Hibbeler, 2017)
to speed up the computations.

We group all the voxels to create four super-voxels. The
first super-voxel contains the voxels of all non-movable parts.
The second, third, and fourth super-voxels are composed of
those voxels forming the upper link, lower link, and grasper of
the robot arm. Then, the mass properties and volumes of these
four super-voxels are computed based on Equations (1) and (2).
In this article, the masses of these super-voxels are denoted as
M0, M1, M2, and M3, their volumes are represented by V0, V1,
V2, and V3, their buoyancy centers are designated as B0, B1,
B2, and B3, and their mass centers are specified as G0, G1, G2,
and G3, as shown in Fig. 5.

At the run time, we apply the following formula to update
the global gravity and buoyancy centers when the robot arm
moves:

 ,i i i i

i i

M G BV
G B

M V
  
 

 (3)

After G has been revised, the tensor of inertia of each super-
voxel is computed by using the parallel axis theorem and the
parallel plane theorem (Hibbeler, 2017) as follows:

(a) Polygonal model (b) Voxel model

426 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020)

2 2

2 2

2 2

.

(),

(),

(),

,

,

.

T
G x y z i

new old
xx xx i y z

new old
yy yy i x z

new old
zz zz i x y

new old
xy xy i x y

new old
xz xz i x z

new old
yz yz i y z

d d d d G G

I I M d d

I I M d d

I I M d d

I I M d d

I I M d d

I I M d d

    
  

  

  

 

 

 



 (4)

Where dG is the displacement vector from the global gravity
center to the gravity center of the i-th super-voxel, as shown in
Fig. 5. As the tensors of inertia of the four super-voxels have
been updated, the tensor of inertia of the whole ROV is com-
puted by:

 0 1 2 3 .I I I I I
    
    (5)

Where Ii is the tensor of inertia of the i-th super-voxel.

IV. THE PHYSICS ENGINE

The physics engine is responsible for computing forces,
moments, accelerations, velocities, and motions at each time
step. The kinematics models employed for accomplishing
these duties are presented in this section, followed by the meth-
ods for estimating drag forces and resistant moments.

1. The Kinematics Models

The six DoF motions are illustrated in Fig. 3. All the mo-
tions are specified in the motion coordinate system. We use
the Newton’s second law to calculate the linear accelerations
and velocities and apply the Euler equations to compute the
angular accelerations and velocities (Nahon, 1996).

The forces acting on the ROV include the buoyancy force
FB, the drag force Fd, the propellers’ thrusts T, the gravity
force (weight of the ROV) W, and the force of the sea current
Fc. These forces are summed up to produce the net force F.
In term, F is used to calculate the acceleration a. In the fol-
lowing step, the linear velocity v is modified and used to up-
date the position of the ROV:

= ,

/ ,

() () ,

().

B d cF F F T W F

a F M

v t h v t ha

d hv t h

   


  

 

     


  
 

 (6)

Where d represents the linear motions (surge, heave, and sway)
and M is the mass of the ROV.

Once the linear motions have been computed, the moments
produced by the buoyancy force, propeller thrusts, and drag

force are estimated. The sum of these moments is used to solve
the angular acceleration. Then, the angular velocity is calcu-
lated and the Euler angles of the ROV is renewed:

1

,

() (() (())),

() () ,

() () ().

B T dN N N N

I N t I t

t h t h

t h t h t h

  
  

  



  

  
  

   

   

  
  
  

 (7)

The term N is the net moment. NB, NT, and Nd are the moments
produced by the buoyancy force, propeller thrusts, and drag
force. Vectors α and ω are the angular acceleration and veloc-
ity. The three Euler angles are represented by vector θ. In each
step, the orientation of the ROV is changed by using θ.

2. Drag Forces and Moments

As the ROV moves under the sea, the surrounding water
produces drag forces to slow it down. The combined drag
force is determined by using an empirical equation given in
(Bourg and Bywalec, 2013):

 21
2 .d dF C u A (8)

Where Cd, ρ, u, and A are the drag coefficient, water density,
speed of the ROV, and projection area of the ROV in the di-
rection of motion. The acting direction of Fd is opposite to the
direction of motion.

As the ROV rotates, the water produces a reaction torque to
wear down its rotation. We adopt the empirical formula, pro-
posed by (Bourg and Bywalec, 2013), to estimate the reaction
torque:

 21
2 .d rN C A (9)

Where Cr and ω are the reaction moment coefficient and the
angular speed of the ROV. Nd acts in the opposite direction of
the angular velocity.

V. THE AI ENGINE

The AI engine is used to translate high-level control com-
mands into physical actions. It also supports auto-piloting and
auto-balancing. In this section, we present the propeller vector
concept for modelling the propulsions of the propellers at first.
Then, based on this concept, a numerical method is deduced to
coordinate the propellers to produce desired forces and mo-
ments. Following this numerical procedure, the command
translation and auto-piloting and balancing methods are for-
mulated.

1. The Concept of Propeller Vector

In this work, we use the propeller vector fi to represent the
thrust of the i-th propeller when it rotates counterclockwise at

 S-K Ueng et al.: A Simulator for Underwater Robots 427

Fig. 6. Positions, thrusts, and moments of the six propellers.

the standard angular speed. The propeller vector fi is a con-
stant and never changes. The standard moment τi created by
the i-th propeller is

 .i i ir f  


 (10)

Where ri is the positional vector of the i-th propeller. The po-
sitions, thrusts, and moments of the six propellers in the ROV
are shown in Fig. 6, where the torques are denoted as ti.

2. The Propeller Coordinate Method

Assuming that a force f has to be generated, the following
equation can be used to calculate the required thrust of each
propeller:

5

0
.i ii

f c f



 

 (11)

Where ci is the scaling factor of fi and has to be solved such
that the target force can be produced. In this work, ci is called
the propeller coefficient of the i-th propeller. If ci equals 1, the
propeller operates in the standard mode. Otherwise, the angu-
lar speed of the propeller is adjusted and the output thrust is
changed.

Since forces are 3D vectors, Equation (11) represents a 3×6
linear system. It contains three conditions and six unknowns
and is thus under-constraint. In order to form a well-defined
linear system, we force the propellers to generate a moment τ:

5 5

0 0
().i i i i ii i

c c r f 
 

   
 

 (12)

Moments are 3D vectors. Therefore, Equation (12) is a 3×6
linear system too. By combining Equations (11) and (12), we
form a 6×6 linear system, which can be solved to produce the
target force f. However, τ has to be set to 0 since no torque is
needed.

If the propellers are commanded to generate a moment τ,
the force of Equation (11) is set to 0 and the moment of Equa-
tion (12) is set to τ. Then, by solving Equations (11) and (12)

together, we can compute the propeller coefficients for produc-
ing τ.

3. The PID Controller

In underwater vehicles, Proportional Integral Derivative
(PID) controllers (Schwab, 2009) are widely used for auto-pi-
loting and auto-balancing. In a PID controller, the user speci-
fies a target value and then the controller continuously
measures the state of the system to calculate the error term e(t),
where t is the time variable. The error term represents the dif-
ference between the target value and the measured one. Then,
e(t), the integration of e(t), and the derivative of e(t) are com-
bined to generate the control signal u(t):

        
0 .t

p i d

de t
u t K e t K e s ds K

dt
    (13)

Where Kp, Ki, and Kd are the gains of the proportional, integral,
and derivative terms. They are given by the users.

In the proposed simulator, the AI engine uses a PID control-
ler to generate control signals to accomplish auto-piloting and
auto-balancing. The error term e(t) in Equation (13) represents
the differences between the target and the observed positions,
orientations, or velocities. The control signal u(t) is utilized to
produce fixations for these differences. It can be a displace-
ment, an angle, or a velocity, depending on the usage of the
PID controller. The meanings of u(t) and details of the con-
trolling methods are to be formulated in the following subsec-
tions.

4. Auto-piloting

In an auto-piloting process, the operator sets a target status
and asks the ROV to reach this goal. At the following time
steps, the AI engine measures the state of the ROV to calculate
the error e(t) and sends e(t) to the PID controller to produce
the control signal u(t). Then, the AI engine uses u(t) to com-
pute the required thrusts and moments for reaching the target
status.

If the target is a position, the control signal u(t) represents
the displacement vector. The thrust force f for achieving the
target position can be derived as follows:

1

1 0

() / ,

() / ,

.

v u t t

a v v t

f Ma

 
  




  
 

 (14)

Where v1, v0, a and M are the new linear velocity, current linear
velocity, acceleration, and mass of the ROV. The variable Δt
represents the remaining time to reach the target. The rationale
behind this method can be explained as follows: We compute
the new velocity by dividing u(t) with Δt. Then, the accelera-
tion is calculated by using the current velocity v0 and the new
velocity v1. By using Newton’s 2nd law, we estimate the
required force f.

t5

t3 t2

t1 t0
t4

f3

f5 f4 f1 f0

f2

Zs

Zs

Xs

Xs

Ys

-r2

-r1
-r0

-r4
-r5

-r3

G

G

ti
fi

-riPosition:
Thrusts:
Moments:

428 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020)

Table 1: Propeller vectors of the six propellers.

propellers positions propeller vector

0 (0.375,-0.085,-0.2) (0.866,0.0,-0.5)

1 (0.00, 0.160,-0.21) (0.0,-0.966, 0.258)

2 (0.40, -0.085,-0.2) (0.866, 0.0, 0.5)

3 (0.375,-0.085, 0.2) (0.866,0.0, 0.5)

4 (0.0, 0.16, 0.21) (0.0,-0.966,-0.258)

5 (-0.40,-0.085, 0.2) (0.866,0.0, -0.5)

Table 2: Propeller coefficients of motions.

Motions Propeller coefficients
{c0, c1, c2, c3, c4, c5}

Surge {0, 0, 1, 1, 1, 1}

Heave {1, 1, 0, 0, 0, 0}

Sway {0, 0, -1, 1, 1, -1}

Roll {1,-1,0.259,-0.259,-0.259, 0.259}

Yaw {0, 0, 1, -1, 1, -1}

At the following step, the AI engine substitutes f into Equa-

tion (11) and sets the moment τ of Equation (12) to 0 to create
a linear system. Finally, the propeller coefficients are solved
and used to adjust the thrusts of the propellers for generating f.

If the target value is an orientation, u(t) represents the
differences of the Euler angles. By using a similar approach,
we deduce the required moment τ as follows.

1

1 0

() / ,

() / ,

.

u t t

t

I


  

 

 
  




  


 (15)

Where ω0, ω1, and α are the current angular velocity, new an-
gular velocity, and angular acceleration of the ROV. Then τ is
substituted into Equation (12) and the force of Equation (11) is
set to 0 to compute the propeller coefficients for producing τ.

If the target value is a velocity, then the following method
is used to compute the required force:

() / ,

.

a u t t

f ma

 




  (16)

Then, by substituting f into Equation (11) and by setting the
moment of Equation (12) to 0, the AI engine computes the pro-
peller coefficients for producing the required thrust. If the tar-
get value is an angular velocity, the required moment is com-
puted by using a similar approach:

() / ,

.

u t t

I



 







 (17)

Fig. 7. The multi-window GUI of the simulator.

5. Auto-Balancing

As the robot arm moves, the gravity and buoyancy centers
migrate to new positions and may not be located in the same
vertical line. Under such a condition, the buoyancy force fB
creates a moment to rotate the ROV. This moment can be com-
puted by

,

.B B

GB B G

GB f

 

 
 (18)

To counter this effect, the AI engine sets the moment term
of Equation (12) to –τB and the force the force term of Equation
(11) to 0 to form a linear system. Then the propeller coeffi-
cients are solved to tune the propellers to generate the counter
moment which keeps the ROV in balance.

VI. IMPLEMENTATION AND EXPERIMENTS

We implemented the ROV simulator by using C-language
and OpenGL libraries (Shreiner et al., 2013). The embedded
hardware is a desktop PC equipped with a graphics card and
several input devices, including a keyboard, a mouse, and two
joysticks. Multiple experiments had been performed and some
of the results are presented in this section.

1. The Virtual ROV and Propeller Vectors

The structure of the virtual ROV has been described in Sec-
tion II, and an image of the ROV was shown in Fig. 1. The
dimension of the ROV is 1.15×0.675×0.7 m3. We use our
voxelization program to discretize the ROV and compute its
mass properties. Based on our calculation, it weighs about
114.46 kg and possesses a volume of 0.133 m3. Thus, it is pos-
itive buoyant, i.e. it will float on the sea surface if all the pro-
pellers are shut down and must rely on the propellers’ thrusts
to dive into the sea.

The positions and propeller vectors of the propellers are de-
picted in Table 1. The propeller coefficients for performing
surge, heave, sway, roll, and yaw are pre-computed by using
Equations (11) and (12) and presented in Table 2. As the user
operates a joystick, the motion of the joystick is mapped into

 S-K Ueng et al.: A Simulator for Underwater Robots 429

Fig. 8. Top: trajectory of the ROV, bottom: errors of the auto-piloting test.

correspondent propeller coefficients to drive the propellers.
Thus, we don’t have to compute them during the simulations.
Since the propellers cannot produce a moment in the direction
of the Zs axis, the ROV cannot perform pitch directly. It has to
move the robot arm forward to incline its body.

2. The GUI

Parts of the GUI is shown in Fig. 7, including the main win-
dow, four sub-windows, and some widgets. The main window
shows the scene viewed by a bystander or the front camera.
The four sub-windows display the images captured by the
three side cameras and the robot arm camera. The widgets be-
low the main canvas depict the states of the ROV, including its
attitude, orientation, position, and velocities.

The users can drive the ROV and manipulate the cameras,
light sources, and robot arm by using the joysticks, keyboard,
and mouse. The HCI also supplies menus for the users to input
control commands and to specify target positions, orientations,
and velocities in auto-piloting and auto-balancing simulations.

3. Auto-piloting Simulations

Two tests had been performed to verify the auto-piloting
functionality. In the first test, the user commands the ROV to
reach a designated position while the ROV is moving toward
another destination. At each of the following steps, the AI en-
gine first computes the control signal and propeller coeffi-
cients. Then, the physics engine estimates the net force and
moment and generates the resultant motions. Subsequently,
the position and orientation of the ROV are modified. At the
end of the step, the scene and key parameters are displayed
on the screen by the graphics engine. The above process is
automatically repeated until the ROV reaches the target place.

Table 3. PID coefficients for positioning.

 Kp Ki Kd

x 2.00 1.00 0.00

y 6.00 3.00 1.00

z 2.00 1.00 0.00

Table 4. PID coefficients for linear-velocity-keeping.

 Kp Ki Kd

surge 2.00 1.00 0.00

heave 5.00 4.00 0.00

sway 2.00 1.00 0.00

Table 5. PID coefficients for angular-velocity-keeping.

 Kp Ki Kd

roll 1.00 0.00 0.00

yaw 2.00 2.00 0.00

pitch 2.00 0.01 0.00

Table 6. PID coefficients for auto-orientation.

 Kp Ki Kd

roll angle 0.050 0.001 0.100

yaw angle 0.050 0.000 0.000

pitch angle 0.050 0.001 0.100

The trajectory of the ROV is shown in the top image of Fig.

8. The trajectory is shaded in red color. The bottom image of
Fig. 8 reveals the errors at each step. The red, green, and blue
curves represent the errors of the x-, y-, and z-coordinates re-
spectively. As the process converges, the steady state error is
less than 10 cm.

In the second test, the ROV is ordered to change its orien-
tation. The AI engine coordinates the propellers to produce the
required moments. The physics engine computes the resultant
rotations to adjust the Euler angles of the ROV. The graphics
engine reveals the simulation in real time. The initial and final
orientations of the ROV are shown in the left and right images
in Fig. 9. The errors of the roll (yellow curve), yaw (purple
curve), and pitch (green curve) angles are drawn in the low
part of this figure. When the process converges, the steady
state error is less than 1 degree.

4. The Gains of the PID Controller

In the aforementioned tests, Kp, Ki, and Kd gains of the PID con-
troller are acquired by try-and-error procedures. The PID gains for
auto-positioning, linear-velocity-keeping, angular-velocity-keep-
ing, and auto-orientation are presented in Tables 3, 4, 5, and 6.

430 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020)

Fig. 9. Auto-orientation test, top: initial and final orientations of the ROV,

bottom: errors of roll (yellow), yaw (purple), and pitch (green) an-
gles .

As shown in Tables 3, 4, and 5, the proportional error has

a significant role in velocity keeping and auto-positioning.
The derivative error is useful only for maintaining the y (ver-
tical) coordinate. In the auto-orientation experiments, we
found that the PID controller is very sensitive to the variations
of gains and these correspondent gains are relatively small,
compared with those for velocity-keeping and auto-position-
ing as shown in Table 6. The derivative error becomes the
most influential factor for reaching target roll and pitch angles.
The integral error is decisive for achieving specified yaw an-
gles.

5. Manual Driving Simulation

In another two tests, the user drives the ROV to form spe-
cialized trajectories by using the joysticks. These tests verify
the integration of the HCI, AI engine, physics engine, and the
graphics engine. Two snapshots of the tests are shown in Fig-
ure 10.

In the left image, the ROV completes a turning circle. To
do so, the user uses the joysticks to control the ROV to move
in constant angular and linear velocities. The trajectory of the
ROV resembles a circle in a plane. The right image shows
another test result. The user drives the ROV to perform heave,
surge, and yaw at the same time. The resultant path forms a
helix curve in the 3D space.

6. Auto-balancing Simulations

We carried out another test to verify the auto-balancing ca-
pability of the AI engine. At first, we turn-off the auto-balanc-
ing function and manipulate the robot arm to grasp samples.
As the robot arm moves, the gravity and buoyancy centers of
the ROV change. The buoyancy force produces a torque and
causes the ROV to rotate until these two centers are aligned in
a vertical line. One snapshot of the progression is shown in
the top image of Fig. 11. The gravity and buoyancy centers
are rendered in yellow and cyan colors respectively. As the

Fig. 10. Turning circle and helix trajectory of the ROV driven by the user.

Fig. 11. Snapshots of auto-balancing test, top image: auto-balancing is

turned off, bottom image: auto-balancing is turned on.

image shows, the weight of the robot arm makes the ROV pitch
forward.

Then, we turn-on the auto-balancing function. The AI en-
gine coordinates the propellers to produce desired torques to
maintain the stability of the ROV while the robot arm moves.
One snapshot is shown in the bottom image of Fig. 11. In this
image, the gravity and buoyancy centers do not reside in the
same vertical line and the ROV should pitch forward. How-
ever, the torques produced by the propellers keep the ROV in
balance.

7. Discussion

The auto-piloting and auto-balancing experiments are in-
spired by the work of (Miskovic et al., 2006), (Lee et al., 2009),
(Tehrani et al., 2010), (Hsu et al., 2000), and (De Souza and
Maruyama, 2007). In these researches, their simulators sup-
port only fundamental graphic display functions. Hence, no

 S-K Ueng et al.: A Simulator for Underwater Robots 431

visualization of the simulation progressions was presented.
They rely on numerical data to verify the results. On the other
hand, the proposed simulator shows the virtual scenes as well
as essential numerical data during the simulation processes.
Users can gain more knowledge about the controlling mecha-
nisms from the displayed results.

These tests also reveal the accuracies of our control
methods. The results show that our control algorithms are
comparative to those methods presented in the related work.
If the target is a position, the final error is less than 10 cm.
For orientation control, the errors of our simulator are less
than 1 degree. In the auto-balancing simulation, the errors
are within 3 degrees. These errors are shown in the bottom
images of Fig. 8 and 9.

Our experiments do not include a thorough accuracy analy-
sis because of lacking ground-truth data. It is hard to get these
information from ROV vendors or the internet. Furthermore,
the accuracy of each simulation is greatly influenced by the
environment. To measure simulation errors in all potential
working places is too expensive and impractical. Thus, error
analysis is partially studied in this work.

In this research, we do not adopt Featherstone’s methods
to develop our simulator. The reasons can be explained as
follows: His algorithms are dedicated for emulating robots op-
erating on land. The buoyancy force produced by the air is
negligible. Thus, the effects of buoyancy forces are not con-
sidered in his models. On the other hand, ROVs navigate
under the sea. The buoyancy forces, generated by the sea wa-
ter, significantly influence the stabilities and motions of these
machines. Hence, buoyancy forces cannot be ignored in ROV
simulations.

Secondly, the base of a land-based robot is usually heavy
enough to keep the robot in balance as its arms move. No extra
force is required to maintain the stability of the robot. How-
ever, a ROV loses its balance when its robot arm moves. It
relies on the propeller thrusts to retain its stability. Feather-
stone’s models do not concern propeller thrusts and are not
suitable for simulating ROVs. Functionally speaking, ROVs
are underwater robots. Nonetheless, their dynamics are quite
different from those of the land-based robots. We must derive
new physics models when developing our simulator.

VII. CONCLUSIONS

In this work, we present a ROV simulator for teaching peo-
ple to handle ROVs. This simulator is capable of simulating a
ROV equipped with movable parts. We developed a voxel-
based method to renew mass properties of the ROV on the fly
such that the simulation can be carried out in real time. We
invent the concept of propeller vector to model the thrust of
each propeller. Then we extend this model to deduce a numer-
ical method for controlling the propellers to produce desired
forces and moments.

In this work, we also developed an AI engine, which inter-
faces the HCI and the physics engine by translating high-level

user commands and control signals into physical actions for
the propellers. The AI engine also contains a PID controller
such that auto-piloting and auto-balancing can be achieved.
We developed the simulator by using game programming par-
adigm to ensure system integration, efficient computational
speed, and decent visual effects.

The proposed ROV is similar to a flight simulator. Its usage
is to emulate the behavior of a ROV and to offer a practicing
platform for users. The embedded virtual ROV is composed
of all parts of a modern ROV. Especially, it contains a moving
robot arm. It resembles a real underwater vehicle better than
those presented in the related work. Thus, the proposed simu-
lator possesses higher fidelity in simulating ROVs.

REFERENCES

Agba, E. I. (1995). SeaMaster: an ROV-manipulator system simulator. IEEE
computer graphics and applications, 15.1: 24-31.

Bourg, D. M. and B. Bywalec (2013). Physics for game developers. O’Reilly
Media Inc.

Christ, R. D. and R. L. Wemli (2007). The ROV Manual: A User Guide for
Remotely Operated Vehicles, Elsevier.

Christensen, L., P. Kampmann, M. Hildebrandt, J. Albiez and F. Kirchner
(2009). Hardware ROV simulation facility for the evaluation of novel un-
derwater manipulation techniques. Proceedings of IEEE OCEANS-
EUROPE, 1-8.

De Souza E. C. and N. Maruyama (2007). Intelligent UUVs: some issues on
ROV dynamic positioning. IEEE Transactions on Aerospace and Elec-
tronic Systems, 43(1): 214-226.

Fabekovic, Z., Z. Eskinja and Z. Vukic (2007). Micro rov simulator. Proceed-
ings of the 49th International Symposium ELMAR focused on Mobile
Multimedia, 97-101.

Featherstone, R. (1984). Robot dynamics algorithms.
Featherstone, R. (2014). Rigid body dynamics algorithms. Springer.
Gregory, J. (2017). Game engine architecture, AK Peters/CRC Press.
Hibbeler, R. C. (2017). Engineering mechanics, dynamics, 14 ed., Pearson

Canada.
Hsu, L., R. R. Costa, F. Lizarralde and J. P. V. S. Da Cunha (2000). Dynamic

positioning of remotely operated underwater vehicles. IEEE Robotics &
Automation Magazine, 7(3): 21-31.

Huang, J., R. Yagel, V. Filippov and Y. Kurzion (1998). An accurate method
for voxelizing polygon meshes. Proceedings of IEEE Symposium on Vol-
ume Visualization, 119-126.

Kim, T. W. (2014). Auto-configurable ROV simulator. Proceedings of IEEE
OCEANS, 1-6.

Lee, S. K., K. H. Sohn, S. W. Byun and J. Y. Kim (2009). Modeling and con-
troller design of manta-type unmanned underwater test vehicle. Journal of
Mechanical Science and Technology, 23: 987-990.

Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development.
proceedings of OCEANS 2008.

Miskovic, N., Z. Vukic, M. Barisic and B. Tovornik (2006). Autotuning auto-
pilots for micro-ROVs. Proceedings of the 14th IEEE Mediterranean Con-
ference on Control and Automation, 1-6.

Nahon, M. (1996). A simplified dynamics model for autonomous underwater
vehicles. Proceedings of IEEE Symposium on Autonomous Underwater
Vehicle Technology, 373-379.

Schwab, B. (2009). AI game engine programming, Nelson Education.
Shreiner, D., G. Sellers, J. Kessenich, and B. Licea-Kane (2013). OpenGL pro-

gramming guide: The Official guide to learning OpenGL, version 4.3. Ad-
dison-Wesley.

Tehrani, N. H., M. Heidari, Y. Zakeri and J. Ghaisari (2010). Development,
depth control and stability analysis of an underwater remotely operated
vehicle (ROV). Proceedings of IEEE ICCA 2010, 814-819.

432 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020)

Ueng, S. K., D. Lin, and C. H. Liu (2008). A ship motion simulation system.
Virtual reality, 12(1), 65-76.

Ueng, S. K. (2013). Physical models for simulating ship stability and hydro-
static motions. Journal of Marine Science and Technology, 21(6), 674-685.

Xu, G., K. Liu, Y. Zhao, S. Li and X. Wang (2016). Research on the modeling
and simulation technology of underwater vehicle. Proceedings of IEEE
OCEANS-Shanghai, 1-6.

	MOTION AND CONTROL SIMULATION FOR UNDERWATER ROBOTS
	Recommended Citation

	Microsoft Word - 12. JMST-2019-CACS-1014 body P422-432.docx

