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ABSTRACT 

Remotely Operated Vehicles (ROVs) are widely used in un-
derwater explorations and constructions.  When navigating un-
der the sea, the motions and stabilities of ROVs are influenced 
by various forces.  Operating ROVs to capture images, grasp 
samples, avoid obstacles, and examine man-made facilities is 
challenging.  This paper proposes an innovative simulator to 
train users to handle ROVs.  Conventional simulators only can 
mimic undeformable ROVs.  Their educational capabilities are 
limited.  The proposed simulator is developed based on ad-
vance mathematics models and is able to emulate a ROV 
equipped with movable robot arms.  Therefore, it can perform 
more realistic and meaningful simulations to enhance the train-
ing courses.  We deduce a voxel-based method to calculate the 
mass properties of the ROV.  Thus, the hydrodynamic effects 
caused by its robot arms can be calculated in real time.  A nu-
merical algorithm is also invented to coordinate the propellers 
to produce required forces and moments.  Hence, the ROV can 
attain specified velocities, positions, and orientations under the 
influences of loads, sea currents, and moving robot arms.  Fur-
thermore, an artificial intelligence engine is integrated into the 
system to perform auto-piloting, auto-balancing, and com-
mand interpretation such that the simulator is more user 
friendly.  Besides, the system is augmented with an interactive 
user interface and a graphics engine to display simulation pro-
gressions and information to increase its  usability.  

I. INTRODUCTION 

A Remotely Operated Vehicle (ROV) is an unmanned un-
derwater vehicle equipped with propellers, cameras, light 
sources, sensors, and robot arms.  ROVs can navigate and per-
form designated tasks in deep water where human divers are 
unable to reach.  The applications of ROVs include undersea 
constructions, mining, investigation, and monitoring (Manley, 

2008).  In recent decades, numerous ROVs have been built and 
widely used for exploring underwater resources.  

However, piloting a ROV to conduct a mission is challeng-
ing.  When moving below the sea surface, the motions and sta-
bility of a ROV are affected by various external forces.  The 
operator has to precisely manipulate the propellers to counter 
these influences such that the ROV can move steadily.  Fur-
thermore, obstacles and man-made facilities may reside in the 
working place.  The operator must drive the vehicle with care 
to avoid colliding with these objects.  In addition to overcom-
ing these hazards, the operator may have to control the robot 
arms to grasp samples, tune the lights to illuminate the sur-
roundings, and use the cameras to capture feedback images at 
the same time.  Obviously, handling a ROV is a multi-tasking 
process in nature and requires sophisticated skills.  People 
should have undertaken intensive training courses before op-
erating ROVs (Christ and Wemli, 2007). 

Training users to pilot ROVs by using real facilities is very 
expensive and dangerous.  Instead, people employ simulators 
to fulfill this job.  Compared with physical machines, simula-
tors are more convenient and flexible.  The trainers can easily 
modify the simulation settings to create new subjects for the 
students.  More importantly, since all exercises are carried out 
in virtual worlds, the learners are able to repeatedly practice 
each skill with lower costs and less risk.  Thus, they will pos-
sess the capabilities to handle ROVs in a short time (Agba, 
1995).  Besides serving as teaching equipment, simulators 
have also been used to study the characteristics of ROVs, ver-
ify control algorithms, and rehearse mission plans to uncover 
errors and prevent dangers. 

1. Related Work 

Many simulators had been constructed to train people to 
handle ROVs.  Some of them were designed by integrating 
hardware and software to improve simulation fidelities (Chris-
tensen et al., 2009; Xu et al., 2016).  Nonetheless, the opera-
tional and building costs of these systems are high, and their 
flexibilities are limited, compared with pure virtual simulators. 
Other researchers developed  ROV simulators which could 
generate hydrodynamic motions and display simulation pro-
gressions in real time (Fabekovic et al., 2007).  The successes 
of these software rely on the underlying kinetic models and 
graphical display methods, which were not well explained in 
the work.  A useful simulator should be able to emulate 
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different kinds of ROVs.  In (Kim, 2014), Kim presented a 
configurable simulator, which allows users to tune the embed-
ded components to reflect the characteristics of  the target ROV.  
However, implementation details are absent from his paper. 

Some researchers were interested at developing simulators 
to evaluate ROV controlling algorithms.  In the work of (Lee 
et al., 2009), Lee et al. constructed a simulation program to 
study ROV control methods.  In the experiments given in (Mis-
kovic et al., 2006), a specialized micro-ROV is used for com-
paring auto-piloting methods.  Tehrani et al. built a micro-ROV, 
which was used as a platform for testing autonomous under-
water vehicles (Tehrani et al., 2010).  In the work of (Hsu et 
al., 2000), Hsu et al. constructed a small ROV to verify their 
auto-position systems.  In (De Souza and Maruyama, 2007), 
researchers used simulation programs to analyze controlling 
algorithms for positioning ROVs under the influences of sea 
currents, tension of tethers, and other hydrodynamic forces.  
These simulators aim to reveal the properties of ROVs or to 
test controlling schemes.  They lack visualization capabilities 
and user interfaces.  Hence, they are unsuitable for job-training. 

Modern ROVs are usually equipped with movable robot 
arms.  Their stabilities and motions are influenced by the 
movements of the robot arms.  In (Featherstone, 1984; Feath-
erstone, 2014), fast algorithms had been invented to compute 
the dynamics and mass inertia of robots fixed at the bases.  In 
these two researches, a robot is regarded as an articulated body 
composing of joints and links.  Each joint possesses a degree 
of freedom, influenced by the external forces acting on the 
links and the internal forces propagating from other joints.  At 
each time step, the accelerations of the joints are computed 
from the base outward to the end joint.  Then, the inertias are 
updated in a backward manner to simulate motions of the ro-
bots.  

2. Research Motivation and Summary 

All the aforementioned simulators lack the ability to emu-
late ROVs equipped with moving robot arms.  In some of these 
systems, their ROVs  have no movable part at all.  Hence, the 
authors did not have to worry about the effects produced by 
robot arms.  In other simulators, the embedded ROVs do con-
tain robot arms.  As the robot arms maneuver, the gravity and 
buoyancy centers migrate to new positions.  The resulting 
buoyance forces will produce torques and rotate the ROVs.  
However, these researchers ignored this problem and took no 
action to attain the ROVs’ stabilities.   

The proposed simulator is developed based on advance hy-
drodynamics models and is able to emulate a ROV equipped 
with movable robot arms.  It can perform more realistic and 
meaningful simulations to enhance the training courses.  A 
good simulator should be able to calculate all acting forces in 
real time.  In this work, we develop a voxel-based strategy to 
precisely compute the tensor of inertia and the gravity and 
buoyancy centers on the fly such that the hydrodynamic forces 
created by the moving robot arms can be efficiently computed.  

When the moving robot arms cause the ROV to rotate, we  

 
Fig. 1. The virtual ROV resembles a physical machine. 

 
 

rely on the thrusts of the propellers to keep the ROV in balance.  
In the proposed simulator, we design a numerical algorithm to 
coordinate the propellers to generate the desired moments to 
counter the rotations.  Hence, the posture and position of the 
ROV can be maintained.  In addition, this propeller control al-
gorithm is also utilized to create forces and torques to attain 
specified velocities, positions, and orientations for the ROV in 
auto-piloting and auto-balancing simulations. 

In a ROV simulator, the actuator is responsible for convert-
ing high-level commands into low-level actions.  Intrinsic al-
gorithms for implementing the actuator had not been well ex-
plained in the previous work.  In this article, the method of 
implementing the actuator is also presented.  Lacking decent 
visual effects and user-friendly interfaces is a common prob-
lem in conventional ROV simulators, since most of these sys-
tems were developed for verifying controlling algorithms and 
studying ROV characteristics.  To remedy this problem, our 
simulator integrates information processing subroutines, inter-
active user interfaces, and graphics display modules to en-
hance its user interface and visual effects. 

II. SYSTEM ARCHITECTURE 

The proposed ROV simulator is developed based on game 
programming paradigm (Gregory, 2017) to improve system in-
tegration and efficiency.  It contains a physics engine (Bourg 
and Bywalec, 2013), an Artificial Intelligence (AI) engine 
(Schwab, 2009), a graphics engine, and a Human Computer 
Interaction (HCI) interface.  These computational procedures 
are used to operate a virtual ROV, which serves as the simula-
tion platform.  

1. The Virtual ROV Platform 

The virtual ROV resembles a modern underwater robot.  It 
is composed of a structure frame, a float, five cameras, six 
propellers, two light sources, a robot arm, and several water-
proof boxes, which enclose electronic and electrical devices. 
The image of the virtual ROV is shown in Fig. 1.  

The main camera is mounted in the front face of the frame. 
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Fig. 2. System architecture of the ROV simulator. 

 
 
Three extra cameras are located at other sides of the frame to 
monitor the surroundings.  Another camera is attached to the 
robot arm to catch feedback images for operating the robot arm.  
The robot arm contains three joins, two links, and one grasper.  
In total, it possesses four degrees of freedom.  Four horizontal 
propellers are mounted at the four bottom corners of the frame, 
and two vertical propellers are attached to the left and right 
sides of the frame.  The propeller blades can rotate clockwise 
and counter-clockwise at varying angular speeds to generate 
different thrusts.  Compared with those virtual ROVs em-
ployed in conventional simulators, our machine is more 
realistic and advanced.  It is an effective facility for train-
ing users to handle modern ROVs. 

2. Architecture of the Simulator 

The architecture of the simulator is illustrated in Fig. 2. The 
HCI allows users to drive the ROV, control the robot arm, turn 
on/off the lights, and manipulate the cameras by using the key-
board, mouse, and joysticks.  The HCI also provides a graph-
ical user interface (GUI), which is composed of several menu 
systems, widgets, and canvas for function selection, command 
input, image display, and data visualization. 

The AI engine is responsible for converting users’ commands 
and high-level control signals into physical actions for the pro-
pellers, cameras, robot arm, and light sources.  The AI engine 
also supports auto-piloting and auto-balancing functionali-
ties such that the users can focus on operating the robot arm 
without worrying the influences of the sea currents and rota-
tional torques. 

 
Fig. 3. The 3 coordinate systems and 6 DoF motions. The box represents 

the ROV. 

 
 
The physics engine is used to compute mass properties, 

forces, and moments during the simulation process.  It is also 
responsible for calculating accelerations and velocities and 
modifying the position and orientation of the ROV.  The 
graphics engine is employed to render the scene and depict es-
sential information during the simulations.  The scene are dis-
played from the view angles of the main camera, the side cam-
eras, the robot arm camera, and a bystander.  The information 
revealed by the graphics engine include the position, orienta-
tion, speed, and trajectory of the ROV.  In auto-piloting and 
auto-balancing simulations, this module is utilized to illustrate 
the progressions of these processes as well as the variations of 
the ROV’s position, orientation, and velocity. 

III. MASS PROPERTY COMPUTATION 

Since the ROV contains a movable robot arm and other ir-
regular-shaped components, to compute its mass properties in 
real time is not easy.  Thus, we develop an innovative algo-
rithm to accomplish this goal.  In this section, we introduce the 
coordinate systems adopted in the proposed simulator at first. 
Then, the details of the algorithm are formulated.  

1. The Coordinate Systems 

The proposed simulator uses three coordinate systems to 
specify the underwater scene, model the ROV, and solve kinet-
ics and kinematics equations.  Similar approaches were 
adopted in the researches of (Ueng et al., 2008; Ueng, 2013).  

These three coordinate systems are depicted in Fig. 3.  The 
world coordinate system is used to specify the undersea scene.  
Its X and Z axes span the horizontal plane while its Y axis 
points vertically to the sky.  The center of the motion coordi-
nate system is located at the gravity center, G.  Its Xs axis 
points to the bow of the ROV while its Zs axis is directed to the 
starboard.  The origin of the body coordinate system resides on 
the lower right corner of the rear face of the bounding box 
(BBox).  Its three axes are parallel to the faces of the BBox. The 
body and the motion coordinate systems share the same axes. 

The body coordinate system is utilized to model the ROV.  
The gravity and buoyance enters are designated in this space.   
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Fig. 4. Voxelization of the float. 

 
 

 
Fig. 5. The four super-voxels, which constitute the main body and the 

links of the robot arm. 

 
 

Positions of fixed components in the ROV are invariant in the 
body coordinate system when the ROV moves.  Motions of the 
ROV are specified in the motion coordinate system.  Surge, 
heave, and sway are translate motions along the Xs, Ys, and Zs 
axes.  Roll, yaw, and pitch are rotations about these axes.  
Forces and moments acting on the ROV are calculated in this 
space.  Accelerations, velocities, and motions are also com-
puted there.  The resultant motions are transformed to the 
world space to update the position and gesture of the ROV. 

2. Voxelization and Mass Property Computation 

Before initiating the simulation procedure, some mass prop-
erties of the ROV have to be calculated.  These data include 
the gravity center G, the buoyancy center B, the mass and ten-
sor of inertia of the ROV.  The volume of the ROV is essential 
for computing the buoyance force and is also computed at this 
stage.  

In this work, we propose a voxel-based method to estimate 
these mass properties.  At first, all the parts of the ROV are 
decomposed into equal-sized cubes.  In literatures, these cubes 
are called voxels (Huang et al., 1998).  Then the mass of each 
voxel is determined according to the constituting material.  An 
example of the voxelization process is shown in Fig. 4.  The 
original float and its voxelization results are displayed in the 
left and right images respectively. 

After the voxelization process, the mass and volume of the 
ROV are obtained by integrating the masses and volumes of 
the voxels.  The gravity and buoyancy centers are computed 
by using the following equations: 

 

, .i i i i

i i

m r v r
G B

m v
  
   (1) 

Where mi, ri, and vi are the mass, position, and volume of the 
i-th voxel.  

Then the tensor of inertia I is computed by using the formu-
las listed below: 

 

   
 

2 2 2 2

2 2

, ,

,

, , .

.

xx i i i yy i i i

zz i i i

xy i i i xz i i i yz i i i

xx xy xz

xy yy yz

xz yz zz

I y z m I x z m

I x y m

I x y m I x z m I y z m

I I I

I I I I

I I I

   

 

  

  
 

   
   

 

    (2) 

Where xi, yi, and zi are the coordinates of the i-th voxel in the 
motion coordinate system.  In this work, the tensor of inertia 
is computed about G and the axes of the motion coordinate 
system. 

3. Super-voxels and Run-time Mass Property Updating 

As the robot arm moves, G and B change.  Their positions 
and the tensor of inertia have to be recomputed.  If we use 
Equations (1) and (2) to update these parameters, it would be 
too slow for a real-time simulation.  Instead, we adopt the par-
allel-axis and parallel-plane theorems given in (Hibbeler, 2017) 
to speed up the computations.  

We group all the voxels to create four super-voxels.  The 
first super-voxel contains the voxels of all non-movable parts.  
The second, third, and fourth super-voxels are composed of 
those voxels forming the upper link, lower link, and grasper of 
the robot arm.  Then, the mass properties and volumes of these 
four super-voxels are computed based on Equations (1) and (2). 
In this article, the masses of these super-voxels are denoted as 
M0, M1, M2, and M3, their volumes are represented by V0, V1, 
V2, and V3,  their buoyancy centers are designated as B0, B1, 
B2, and B3, and their mass centers are specified as G0, G1, G2, 
and G3, as shown in Fig. 5. 

At the run time, we apply the following formula to update 
the global gravity and buoyancy centers when the robot arm 
moves: 

 ,i i i i

i i

M G BV
G B

M V
  
 

 (3)  

After G has been revised, the tensor of inertia of each super-
voxel is computed by using the parallel axis theorem and the 
parallel plane theorem (Hibbeler, 2017) as follows: 

(a) Polygonal model (b) Voxel model
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Where dG is the displacement vector from the global gravity 
center to the gravity center of the i-th super-voxel, as shown in 
Fig. 5.  As the tensors of inertia of the four super-voxels have 
been updated, the tensor of inertia of the whole ROV is com-
puted by: 

 0 1 2 3 .I I I I I
    
     (5) 

Where Ii is the tensor of inertia of the i-th super-voxel. 

IV. THE PHYSICS ENGINE 

The physics engine is responsible for computing forces, 
moments, accelerations, velocities, and motions at each time 
step.  The kinematics models employed for accomplishing 
these duties are presented in this section, followed by the meth-
ods for estimating drag forces and resistant moments. 

1. The Kinematics Models 

The six DoF motions are illustrated in Fig. 3.  All the mo-
tions are specified in the motion coordinate system.  We use 
the Newton’s second law to calculate the linear accelerations 
and velocities and apply the Euler equations to compute the 
angular accelerations and velocities (Nahon, 1996). 

The forces acting on the ROV include the buoyancy force 
FB, the drag force Fd, the propellers’ thrusts T, the gravity 
force (weight of the ROV) W, and the force of the sea current 
Fc.  These forces are summed up to produce the net force F.  
In term, F is used to calculate the acceleration a.  In the fol-
lowing step, the linear velocity v is modified and used to up-
date the position of the ROV: 
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Where d represents the linear motions (surge, heave, and sway) 
and M is the mass of the ROV.  

Once the linear motions have been computed, the moments 
produced by the buoyancy force, propeller thrusts, and drag 

force are estimated.  The sum of these moments is used to solve 
the angular acceleration.  Then, the angular velocity is calcu-
lated and the Euler angles of the ROV is renewed: 
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The term N is the net moment.  NB, NT, and Nd are the moments 
produced by the buoyancy force,  propeller thrusts, and drag 
force.  Vectors α and ω are the angular acceleration and veloc-
ity.  The three Euler angles are represented by vector θ.  In each 
step, the orientation of the ROV is changed by using θ. 

2. Drag Forces and Moments 

As the ROV moves under the sea, the surrounding water 
produces drag forces to slow it down.  The combined drag 
force is determined by using an empirical equation given in 
(Bourg and Bywalec, 2013): 

 21
2 .d dF C u A  (8) 

Where Cd, ρ, u, and A are the drag coefficient, water density, 
speed of the ROV, and projection area of the ROV in the di-
rection of motion.  The acting direction of Fd is opposite to the 
direction of motion. 

As the ROV rotates, the water produces a reaction torque to 
wear down its rotation.  We adopt the empirical formula, pro-
posed by (Bourg and Bywalec, 2013), to estimate the reaction 
torque: 

 21
2 .d rN C A  (9) 

Where Cr and ω are the reaction moment coefficient and the 
angular speed of the ROV.  Nd acts in the opposite direction of 
the angular velocity. 

V. THE AI ENGINE 

The AI engine is used to translate high-level control com-
mands into physical actions.  It also supports auto-piloting and 
auto-balancing.  In this section, we present the propeller vector 
concept for modelling the propulsions of the propellers at first. 
Then, based on this concept, a numerical method is deduced to 
coordinate the propellers to produce desired forces and mo-
ments.  Following this numerical procedure, the command 
translation and auto-piloting and balancing methods are for-
mulated. 

1. The Concept of Propeller Vector 

In this work, we use the propeller vector fi to represent the 
thrust of the i-th propeller when it rotates counterclockwise at  
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Fig. 6. Positions, thrusts, and moments of the six propellers. 

 
 

the standard angular speed.  The propeller vector fi is a con-
stant and never changes.  The standard moment τi created by 
the i-th propeller is  

 .i i ir f  


 (10) 

Where ri is the positional vector of the i-th propeller.  The po-
sitions, thrusts, and moments of the six propellers in the ROV 
are shown in Fig. 6, where the torques are denoted as ti.  

2. The Propeller Coordinate Method 

Assuming that a force f has to be generated, the following 
equation can be used to calculate the required thrust of each 
propeller: 

 
5

0
.i ii

f c f



 

 (11) 

Where ci is the scaling factor of fi and has to be solved such 
that the target force can be produced.  In this work, ci is called 
the propeller coefficient of the i-th propeller.  If ci equals 1, the 
propeller operates in the standard mode.  Otherwise, the angu-
lar speed of the propeller is adjusted and the output thrust is 
changed. 

Since forces are 3D vectors,  Equation (11) represents a 3×6 
linear system.  It contains three conditions and six unknowns 
and is thus under-constraint.  In order to form a well-defined 
linear system, we force the propellers to generate a moment τ: 
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 (12) 

Moments are 3D vectors.  Therefore, Equation (12) is a 3×6 
linear system too.  By combining Equations (11) and (12), we 
form a 6×6 linear system, which can be solved to produce the 
target force f.  However, τ has to be set to 0 since no torque is 
needed. 

If the propellers are commanded to generate a moment τ, 
the force of Equation (11) is set to 0 and the moment of Equa-
tion (12) is set to τ.  Then, by solving Equations (11) and (12) 

together, we can compute the propeller coefficients for produc-
ing τ. 

3. The PID Controller 

In underwater vehicles, Proportional Integral Derivative 
(PID) controllers (Schwab, 2009) are widely used for auto-pi-
loting and auto-balancing.  In a PID controller, the user speci-
fies a target value and then the controller continuously 
measures the state of the system to calculate the error term e(t), 
where t is the time variable.  The error term represents the dif-
ference between the target value and the measured one.  Then, 
e(t), the integration of e(t), and the derivative of e(t) are com-
bined to generate the control signal u(t): 

        
0 .t

p i d

de t
u t K e t K e s ds K

dt
     (13) 

Where Kp, Ki, and Kd are the gains of the proportional, integral, 
and derivative terms.  They are given by the users. 

In the proposed simulator, the AI engine uses a PID control-
ler to generate control signals to accomplish auto-piloting and 
auto-balancing.  The error term e(t) in Equation (13) represents 
the differences between the target and the observed positions, 
orientations, or velocities.  The control signal u(t) is utilized to 
produce fixations for these differences.  It can be a displace-
ment, an angle, or a velocity, depending on the usage of the 
PID controller.  The meanings of u(t) and details of the con-
trolling methods are to be formulated in the following subsec-
tions. 

4. Auto-piloting  

In an auto-piloting process, the operator sets a target status 
and asks the ROV to reach this goal.  At the following time 
steps, the AI engine measures the state of the ROV to calculate 
the error e(t) and sends e(t) to the PID controller to produce 
the control signal u(t).  Then, the AI engine uses u(t) to com-
pute the required thrusts and moments for reaching the target 
status.   

If the target is a position, the control signal u(t) represents 
the displacement vector.  The thrust force f for achieving the 
target position can be derived as follows: 
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Where v1, v0, a and M are the new linear velocity, current linear 
velocity, acceleration, and mass of the ROV.  The variable Δt 
represents the remaining time to reach the target.  The rationale 
behind this method can be explained as follows: We compute 
the new velocity by dividing u(t) with Δt.  Then, the accelera-
tion is calculated by using the current velocity v0 and the new 
velocity v1.  By using Newton’s 2nd law, we estimate the 
required force f.  
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Table 1: Propeller vectors of the six propellers. 

propellers positions propeller vector 

0 (0.375,-0.085,-0.2 ) (0.866,0.0,-0.5) 

1 (0.00, 0.160,-0.21) (0.0,-0.966, 0.258) 

2 (0.40, -0.085,-0.2) (0.866, 0.0, 0.5) 

3 (0.375,-0.085, 0.2) (0.866,0.0, 0.5) 

4 (0.0,  0.16, 0.21) (0.0,-0.966,-0.258) 

5 (-0.40,-0.085,  0.2) (0.866,0.0, -0.5) 

 
 

Table 2: Propeller coefficients of motions. 

Motions Propeller coefficients 
{c0, c1, c2, c3, c4, c5} 

Surge {0, 0, 1, 1, 1, 1} 

Heave {1, 1, 0, 0, 0, 0} 

Sway {0, 0, -1, 1, 1, -1} 

Roll {1,-1,0.259,-0.259,-0.259, 0.259} 

Yaw {0, 0, 1, -1, 1, -1} 

 
 
At the following step, the AI engine substitutes f into Equa-

tion (11) and sets the moment τ of Equation (12) to 0 to create 
a linear system.  Finally, the propeller coefficients are solved 
and used to adjust the thrusts of the propellers for generating f.   

If the target value is an orientation, u(t) represents the 
differences of the Euler angles.  By using a similar approach, 
we deduce the required moment τ as follows. 
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Where ω0, ω1, and α are the current angular velocity, new an-
gular velocity, and angular acceleration of the ROV.  Then τ is 
substituted into Equation (12) and the force of Equation (11) is 
set to 0 to compute the propeller coefficients for producing τ.  

If the target value is a velocity, then the following method 
is used to compute the required force: 
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Then, by substituting f into Equation (11) and by setting the 
moment of Equation (12) to 0, the AI engine computes the pro-
peller coefficients for producing the required thrust.  If the tar-
get value is an angular velocity, the required moment is com-
puted by using a similar approach: 
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Fig. 7. The multi-window GUI of the simulator. 

 
 

5. Auto-Balancing 

As the robot arm moves, the gravity and buoyancy centers 
migrate to new positions and may not be located in the same 
vertical line.  Under such a condition, the buoyancy force fB 
creates a moment to rotate the ROV.  This moment can be com-
puted by 
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To counter this effect, the AI engine sets the moment term 
of Equation (12) to –τB and the force the force term of Equation 
(11) to 0 to form a linear system. Then the propeller coeffi-
cients are solved to tune the propellers to generate the counter 
moment which keeps the ROV in balance. 

VI.  IMPLEMENTATION AND EXPERIMENTS 

We implemented the ROV simulator by using C-language 
and OpenGL libraries (Shreiner et al., 2013). The embedded 
hardware is a desktop PC equipped with a graphics card and 
several input devices, including a keyboard, a mouse, and two 
joysticks. Multiple experiments had been performed and some 
of the results are presented in this section. 

1. The Virtual ROV and Propeller Vectors  

The structure of the virtual ROV has been described in Sec-
tion II, and an image of the ROV was shown in Fig. 1. The 
dimension of the ROV is 1.15×0.675×0.7 m3. We use our 
voxelization program to discretize the ROV and compute its 
mass properties. Based on our calculation, it weighs about 
114.46 kg and possesses a volume of 0.133 m3. Thus, it is pos-
itive buoyant, i.e. it will float on the sea surface if all the pro-
pellers are shut down and must rely on the propellers’ thrusts 
to dive into the sea.  

The positions and propeller vectors of the propellers are de-
picted in Table 1. The propeller coefficients for performing 
surge, heave, sway, roll, and yaw are pre-computed by using 
Equations (11) and (12) and presented in Table 2. As the user 
operates a joystick, the motion of the joystick is mapped into  
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Fig. 8. Top: trajectory of the ROV, bottom: errors of the auto-piloting test. 

 
 

correspondent propeller coefficients to drive the propellers. 
Thus, we don’t have to compute them during the simulations. 
Since the propellers cannot produce a moment in the direction 
of the Zs axis, the ROV cannot perform pitch directly. It has to 
move the robot arm forward to incline its body.  

2. The GUI 

Parts of the GUI is shown in Fig. 7, including the main win-
dow, four sub-windows, and some widgets. The main window 
shows the scene viewed by a bystander or the front camera. 
The four sub-windows display the images captured by the 
three side cameras and the robot arm camera. The widgets be-
low the main canvas depict the states of the ROV, including its 
attitude, orientation, position, and velocities. 

The users can drive the ROV and manipulate the cameras, 
light sources, and robot arm by using the joysticks, keyboard, 
and mouse. The HCI also supplies menus for the users to input 
control commands and to specify target positions, orientations, 
and velocities in auto-piloting and auto-balancing simulations. 

3. Auto-piloting Simulations 

Two tests had been performed to verify the auto-piloting 
functionality.  In the first test, the user commands the ROV to 
reach a designated position while the ROV is moving toward 
another destination.  At each of the following steps, the AI en-
gine first computes the control signal and propeller coeffi-
cients.  Then, the physics engine estimates the net force and 
moment and generates the resultant motions.  Subsequently, 
the position and orientation of the ROV are modified.  At the 
end of the step, the scene and key parameters are displayed 
on the screen by the graphics engine.  The above process is 
automatically repeated until the ROV reaches the target place. 

Table 3. PID coefficients for positioning. 

 Kp Ki Kd 

x 2.00 1.00 0.00 

y 6.00 3.00 1.00 

z 2.00 1.00 0.00 

 
 
Table 4. PID coefficients for linear-velocity-keeping. 

 Kp Ki Kd 

surge 2.00 1.00 0.00 

heave 5.00 4.00 0.00 

sway 2.00 1.00 0.00 

 
 
Table 5. PID coefficients for angular-velocity-keeping. 

 Kp Ki Kd 

roll 1.00 0.00 0.00 

yaw 2.00 2.00 0.00 

pitch 2.00 0.01 0.00 

 
 

Table 6. PID coefficients for auto-orientation. 

 Kp Ki Kd 

roll angle 0.050 0.001 0.100 

yaw angle 0.050 0.000 0.000 

pitch angle 0.050 0.001 0.100 

 
 
The trajectory of the ROV is shown in the top image of Fig. 

8.  The trajectory is shaded in red color.  The bottom image of 
Fig. 8 reveals the errors at each step.  The red, green, and blue 
curves represent the errors of the x-, y-, and z-coordinates re-
spectively.  As the process converges, the steady state error is 
less than 10 cm. 

In the second test, the ROV is ordered to change its orien-
tation.  The AI engine coordinates the propellers to produce the 
required moments.  The physics engine computes the resultant 
rotations to adjust the Euler angles of the ROV.  The graphics 
engine reveals the simulation in real time.  The initial and final 
orientations of the ROV are shown in the left and right images 
in Fig. 9.  The errors of the roll (yellow curve), yaw (purple 
curve), and pitch (green curve) angles are drawn in the low 
part of this figure.  When the process converges, the steady 
state error is less than 1 degree.  

4. The Gains of the PID Controller 

In the aforementioned tests, Kp, Ki, and Kd gains of the PID con-
troller are acquired by try-and-error procedures.  The PID gains  for 
auto-positioning, linear-velocity-keeping, angular-velocity-keep-
ing, and auto-orientation are presented in Tables 3, 4, 5, and 6.   
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Fig. 9. Auto-orientation test, top: initial and final orientations of the ROV, 

bottom: errors of roll (yellow), yaw (purple), and pitch (green) an-
gles . 

 
 
As shown in Tables 3, 4, and 5,  the proportional error has 

a significant role in velocity keeping and auto-positioning.  
The derivative error is useful only for maintaining the y (ver-
tical) coordinate.  In the auto-orientation experiments, we 
found that the PID controller is very sensitive to the variations 
of gains and these correspondent gains are relatively small, 
compared with those for velocity-keeping and auto-position-
ing as shown in Table 6.  The  derivative error becomes the 
most influential factor for reaching target roll and pitch angles. 
The integral error is decisive for achieving specified yaw an-
gles. 

5. Manual Driving Simulation 

In another two tests, the user drives the ROV to form spe-
cialized trajectories by using the joysticks.  These tests verify 
the integration of the HCI, AI engine, physics engine, and the 
graphics engine.  Two snapshots of the tests are shown in Fig-
ure 10.  

In the left image, the ROV completes a turning circle.  To 
do so, the user uses the joysticks to control the ROV to move 
in constant angular and linear velocities.  The trajectory of the 
ROV resembles a circle in a plane.  The right image shows 
another test result.  The user drives the ROV to perform heave, 
surge, and yaw at the same time.  The resultant path forms a 
helix curve in the 3D space. 

6. Auto-balancing Simulations 

We carried out another test to verify the auto-balancing ca-
pability of the AI engine.  At first, we turn-off the auto-balanc-
ing function and  manipulate the robot arm to grasp samples.  
As the robot arm moves, the gravity and buoyancy centers of 
the ROV change.  The buoyancy force produces a torque and 
causes the ROV to rotate until these two centers are aligned in 
a vertical line.  One snapshot of the progression is shown in 
the top image of Fig. 11.  The gravity and buoyancy centers 
are rendered in yellow and cyan colors respectively.  As the  

 
Fig. 10. Turning circle and helix trajectory of the ROV driven by the user. 

 
 

 
Fig. 11. Snapshots of auto-balancing test, top image: auto-balancing is 

turned off, bottom image: auto-balancing is turned on. 

 
 

image shows, the weight of the robot arm makes the ROV pitch 
forward. 

Then, we turn-on the auto-balancing function.  The AI en-
gine coordinates the propellers to produce desired torques to 
maintain the stability of the ROV while the robot arm moves.  
One snapshot is shown in the bottom image of Fig. 11.  In this 
image, the gravity and buoyancy centers do not reside in the 
same vertical line and the ROV should pitch forward.  How-
ever, the torques produced by the propellers keep the ROV in 
balance.  

7. Discussion 

The auto-piloting and auto-balancing experiments are in-
spired by the work of (Miskovic et al., 2006), (Lee et al., 2009), 
(Tehrani et al., 2010), (Hsu et al., 2000), and (De Souza and 
Maruyama, 2007).  In these researches, their simulators sup-
port  only fundamental graphic display functions.  Hence, no 
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visualization of the simulation progressions was presented. 
They rely on numerical data to verify the results.  On the other 
hand, the proposed simulator shows the virtual scenes as well 
as essential numerical data during the simulation processes. 
Users can gain more knowledge about the controlling mecha-
nisms from the displayed results.  

These tests also reveal the accuracies of our control 
methods.  The results show that our control algorithms are 
comparative to those methods presented in the related work.  
If the target is a position, the final error is less than 10 cm.  
For orientation control, the errors of our simulator are less 
than 1 degree.  In the auto-balancing simulation, the errors 
are within 3 degrees.  These errors are shown in the bottom 
images of Fig. 8 and 9.  

Our experiments do not include a thorough accuracy analy-
sis because of lacking ground-truth data.  It is hard to get these 
information from ROV vendors or the internet.  Furthermore, 
the accuracy of each simulation is greatly influenced by the 
environment.  To measure simulation errors in all potential 
working places is too expensive and impractical.  Thus, error 
analysis is partially studied in this work. 

In this research, we do not adopt Featherstone’s methods 
to develop our simulator.  The reasons can be explained as 
follows: His algorithms are dedicated for emulating robots op-
erating on land.  The buoyancy force produced by the air is 
negligible.  Thus, the effects of buoyancy forces are not con-
sidered in his models.  On the other hand, ROVs navigate 
under the sea.  The buoyancy forces, generated by the sea wa-
ter, significantly influence the stabilities and motions of these 
machines.  Hence, buoyancy forces cannot be ignored in ROV 
simulations.  

Secondly, the base of a land-based robot is usually heavy 
enough to keep the robot in balance as its arms move.  No extra 
force is required to maintain the stability of the robot.  How-
ever, a ROV loses its balance when its robot arm moves.  It 
relies on the propeller thrusts to retain its stability.  Feather-
stone’s models do not concern propeller thrusts and are  not 
suitable for simulating ROVs.  Functionally speaking, ROVs 
are underwater robots.  Nonetheless,  their dynamics are quite 
different from those of the land-based robots.  We must derive 
new physics models when developing our simulator. 

VII. CONCLUSIONS 

In this work, we present a ROV simulator for teaching peo-
ple to handle ROVs.  This simulator is capable of simulating a 
ROV equipped with movable parts.  We developed a voxel-
based method to renew mass properties of the ROV on the fly 
such that the simulation can be carried out in real time.  We 
invent the concept of propeller vector to model the thrust of 
each propeller.  Then we extend this model to deduce a numer-
ical method for controlling the propellers to produce desired 
forces and moments.  

In this work, we also developed an AI engine, which inter-
faces the HCI and the physics engine by translating high-level 

user commands and control signals into physical actions for 
the propellers.  The AI engine also contains a PID controller 
such that auto-piloting and auto-balancing can be achieved. 
We developed the simulator by using game programming par-
adigm to ensure system integration,  efficient computational 
speed, and decent visual effects.  

The proposed ROV is similar to a flight simulator.  Its usage 
is to emulate the behavior of a ROV and to offer a practicing 
platform for users.  The embedded virtual ROV is composed 
of all parts of a modern ROV.  Especially, it contains a moving 
robot arm.  It resembles a real underwater vehicle better than 
those presented in the related work.  Thus, the proposed simu-
lator possesses higher fidelity in simulating ROVs. 
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