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ABSTRACT 

This paper shows how to identify and control a mouse type 
Ballbot.  The Ballbot is an unstable complex system.  Using 
the first principle law to model the robot is not accurate enough.  
An identification method is proposed.  The model is trans-
formed to be MIMO state space model and using a convex-
concave optimization to design a robust PI+phase-lead con-
troller.  Experiments on a design Ballbot are presented.  It turns 
out that an identification model of Bollbot and a PI+phase-lead 
controller design framework is suitable for using to control a 
Ballbot.  

I. INTRODUCTION 

A Ballbot is an innovation of a robot that can operate in an 
indoor environment.  We can apply this kind of mobile robot 
in a tight area.  Many applications can use the Ballbot, such as 
industrial space, healthcare, and also office automation.  Lau-
wers et al.  introduced the first Ballbot (Lauwers et al., 2001).  
The system used an inverse mouse (IM) shape to drive the ball 
on the base.  Another type of Ballbot is three omnidirectional 
wheels (OW), first introduced by Kuagai and Ochiai (2009).  
The OW type is more popular than the IM shape due to the IM 
type lacks yaw control.  However, the OW type is more diffi-
cult to control than the IM type robot and requires omnidirec-
tional wheels.  The IM type robot has been improved to solve 
the drawback by adding a yaw drive (Kumaga and Ochiai, 
2009).  In the literature, the dynamic model of the Ballbots, 
both IM and OW, types are hard to derive even they are sys-
tematic.  Not only the complexities to derive the dynamic 
equations in terms of the state-space equations, but each part 
of the robot also has to measure correctly, for example, each 

moment of inertia of each axis and the position of the center of 
gravity (Prieto et al., 2012; Bjärenstam and Lennartsson, 2012). 

The most challenging part of designing the Ballbot is to 
construct a dynamic model.  As shown in the literature, there 
is very complicated to derive a precise mathematic model of 
the Ballbot.  The length and weight of each component have 
coursed uncertainty to the robot.  Instead of obtaining the 
model of the robot by using the Euler-Lagrange equation, one 
can use an identification technique (Boonto and Werner, 2008).  
Using collecting input-output data to build a model, we do not 
need to measure the Ballbot parameters.  Even the Ballbot is a 
nonlinear unstable open-loop system; we can trial-and-error 
tune with experiment a PID controller to stabilize the robot.  
Therefore, one could use a closed-loop system identification 
approach (Ljung, 1999) to build a mathematic model.  Since 
the model is produced using real operating data of the robot, 
the model is very accurate and suitable for controller design.   

In this work, we introduce a framework to identify and con-
trol a mouse type Ballbot.  This paper organizes as follows.  
We describe the mechanical structure of the Ballbot in Section 
II.  Section III explains the system identification approach.  
The procedure of how to design a 𝐻ஶ controller and a robust 
PI + phase-lead controller using the convex-concave optimiza-
tion is shown in Section IV and V, respectively.  The experi-
mental result is shown in Section VI.  Finally, conclusions are 
drawn in Section VII. 

II. SYSTEM DESCRIPTION 

Our Ballbot is a mouse type, as shown in Fig. 1, which is 
similar to CMU Ballbot( Nagarajan et al. 2014) but simpler. 
The robot included a NI MyRIO 1900 board and mid-range 
IMU sensor unit, four motor drivers, four rollers, and four DC 
motors.  Every two motors control one direction and use only 
one control signal, e.g., the 𝑥-axis and 𝑦-axis direction.  The 
robot is a height of 1.5 meters and weighs 15 kilograms.  The 
ball is a 10.6 cm bowling ball, which is strong enough to sup-
port the robot.  We control the robot by sampling the control 
signal at 10 msec, which is suitable for the controller board and 
the natural frequency of the robot.  Fig. 2(a) and (b) show the 
structure of the design Ballbot.  Each motor is attached to a  

Paper submitted 01/21/20; revised 05/03/20; accepted 07/06/20. Correspond-
ing Author: Sudchai Boonto (e-mail: sudchai.boo@kmutt.ac.th). 
Department of Control Systems and Instrumentation Engineering,  
King Mongkut’s University of Technology Thonburi, Bangkok, Thailand. 
 



 S. Boonto et al.: Mouse Type BallBot Identification and Control 405 

 

 
Fig. 1.  The ballbot under closed-loop control 

 
 

roller using a pulley and attached to the ball. 
Even the robot looks reasonable to model with a standard 

method like the first principle method.  However, it is still 
tough to find an accurate model, especially for controller de-
sign purposes.  There are many uncertainties in each mechan-
ical part, and this makes the model is not specific enough to 
simulate as the robot. 

III. SYSTEM IDENTIFICATION 

As mention in the previous section, it is difficult to derive the 
mathematical model of the Ballbot using the theoretical mod-
eling method (Prieto, 2012).  This work considers using a 
closed-loop identification framework (Ljung, 1999; Boonto, 
2011; Thabthimratthana et al., 2016) to identify the robot 
model. Since the robot is an open-loop unstable system, it re-
quired an initial stabilized controller.  We use two-loop control, 
as shown in Fig. 3.  The outer loop controls the positions of the 
robot.  The outer loop configuration contains two simple PI 
controllers for initially control.  Since the structure of the hard-
ware for both directions, 𝑥 and 𝑦, are nearly identical, and then 
we can use PI controllers with the same parameters for both 
loops control.  The shaded box in Fig. 3 is an inner loop of the 
control configuration.  The inner loop controls the speed of DC 
motors, as shown in Fig. 4, which uses only a simple P con-
troller for each loop, where F is a scaling gain to change the  

 
Fig. 2.  (a) ball and roller (b) the Ballbot on the floor 

 
 

 
Fig. 3.  A closed-loop system configuration for system identification 

 
 

 
Fig. 4. Inner loop control 

 
 
speed to round per minute (rpm) unit.  Since the P controllers 
aim to control the speed of the motors, thus we can tune them 
by hand.  Both motors are identical; only one tuning parameter 
for P control can be used.  The P controller parameters are the 
crucial part because we need to use them to stabilize the un-
known nonlinear system.  We tuned the parameters by a trial-
and-error technique and applying it to stabilize the robot at the 
reference point as long as possible.  However, it requires some 
level of experience.  Note that for the closed-loop system iden-
tification, the controller that is used to stabilize the system in 
the collecting data step must be as simple as possible.  This 
requirement is to avoid the controller contaminate the feed-
back data. 

The input-output data for identification are collected by ap-
plying two multisine excitation signals (Ljung, 1999) 𝑟ଶ௫ and 
𝑟ଶ௬ to the robot that is holding at ሺ0,0ሻ operating point.  The 
sampling rate to obtain the data is 10 msec.  Both excitation  
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Fig. 5. Excitation signals 

 
 

signals are separated into three parts, 0.1-0.4 Hz, 0.4-4 Hz, and 
4-10 Hz.  The amplitude of each part is 0.09 rpm, 0.03 rpm, 
and 0.016 rpm, respectively.  We use three parts of the excita-
tion signal to guarantee that the signals are rich enough for all 
frequency range.  The amplitude of the high-frequency signal 
must be smaller than the signal at the low-frequency range. 
The robot cannot follow the high amplitude signal if it is high 
frequency.  Moreover the signal 𝑟ଶ௫ and 𝑟ଶ௬ must uncorrelated. 
We use a random phase technique (Ljung, 1999) to prevent this 
phenomenon.  The designed signals are shown in Fig. 5. 

The input-output data are used to construct a two-input two-
output ARX model with the system identification toolbox of 
MATLAB.  Based on the inverse pendulum structure of the 
Ballbot, the dynamic model of the Ballbot described in (Lau-
wers et al., 2001) is four orders.  In this work, we simply fixed 
the past output sample to have four samples and trial-and-error 
select the number of past input and delay.  Finally, the model 
has four past sample outputs, three past sample inputs, and one 
delay sample for each input-output channel as follow: 

 
           

     
11 1 12 2 11 1

12 2 1

A z y k A z y k B z u k

B z u k e k

  

 
 (1) 

 
           

     
21 2 22 1 21 1

22 2 2

A z y k A z y k B z u k

B z u k e k

  

 
 (2) 

, where 

  1 2 3 4
11 1 2.725 2.54 0.814 0.0003993A z z z z z         

  1 2 3 4
12 0.2799 0.5394 0.2585 0.002648A z z z z z         

  1 2 3
11 1.034 2.818 2.628 0.8436B z z z z        

 
Fig. 6. Comparison between the closed-loop output signals of the model 

and measured data from the experiment. 

 

  1 2 3
12 0.001797 0.3116 0.608 0.2965B z z z z       

  1 2 3 4
21 1 2.748 2.553 0.8063 0.00194A z z z z z         

  1 2 3 5 4
22 0.1369 0.2434 0.106 1.335 10A z z z z z           

  1 2 3
21 0.0006536 0.1394 0.2489 0.1085B z z z z       

  1 2 3
22 1.126 3.092 2.87 0.924B z z z z        

 ie k  are white noise and 𝑧ିଵ here is a delay operator defined 

by  1 ( 1)z y k y k    . The model is not only for open-loop 

simulation but also for controller design purposes.  Hence the 
quality of the model is not only a similarity of the output of the 
model and the validation signal, but it must be controllable by 
the controller used in the identification phase.  Here we man-
ually adapt the model until the model is satisfied both criteria.  
To adjust the identified model, we change the condense of the 
excitation signal to match the frequency range around the 
crossover frequency.  To check the quality of the model, we 
control the model with the same controller as we were collect-
ing the data.  The comparison of the closed-loop output of the 
model and measured data from the experiments are shown in 
Fig. 6.  Note that from the frequency response of the system 
shown in Fig. 7, the phase of the system from input 1 to output  
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Fig. 7. The bode diagram of the identified model from input 1 to output 

1 (upper), and from input 2 to output 2 (lower). 

 
 
1 and from input 2 to output 2 are 180o.  Then, it is clear that 
the input-output system is a non-minimum phase system. 

IV. ROBUST CONTROLLER DESIGN 

Since the identified model is built on the input-output data, 
which are in a linear range, the simple PID controller is not 
suitable to guarantee the high performance of the closed-loop 
system.  The real robot is also an unstable nonlinear system.  
Here we want to control the Ballbot mostly in a vertical posi-
tion, which is not far from the linear range.  A robust controller 
can be used to design a controller that can deal with a model 
mismatch problem between the model and the real system.  We 
create two robust controllers.  One is a H∞controller based on 
a mixed-sensitivity designed method, and the second one is a 
proposed robust PI + phase-lead controller.  The robust PI + 
phase-lead controller is designed using a convex-concave 
optimization proposed by Hast et al (2013).  Since the ARX  

 
Fig. 8. Close-loop control configuration 

 
 

model is a discrete-time model, it cannot directly develop the 
robust PI + phase-lead controller.  We first transform the model 
into a continuous-time state-space model. For comparison pur-
poses, the state-space model is the base model for designing 
both robust controllers. 

The control configuration considered in this work is shown 
in Fig. 8.  Also, the loop transfer function is 𝐿ሺ𝑠ሻ ൌ 𝐾ሺ𝑠ሻ𝐺ሺ𝑠ሻ. 

1. H∞controller 

The 𝐻ஶcontroller is designed using a standard mixed-sen-
sitivity method (Skogestad and Postlethwaite, 2005) with the 
hinfsyn command of MATLAB.  We use two weighting filters 
𝑊௦ and 𝑊௞ at the error signal and the control signal, respec-
tively, the same for both input-output transfer functions. The 
weighting filters are 

   5

0.5

5 10sW s
s 
 

 (3) 

  
32.5 2.5 10

0.1k

s
W s

s

 



 (4) 

The resulted 𝐻ஶ controller is a 14th  order controller.  Un-
fortunately, as mention by Kirimi and Galdos (2011), in some 
cases, the full-order 𝐻ஶ controller cannot stabilize the system, 
including our case.  This work the 14th order 𝐻ஶ controller 
could not stabilize our real Ballbot.  Then we reduce the order 
of the controller to be 4th order by using the ballreal command 
of MATLAB.  The resulted 𝐻ஶ  controller in transfer matrix 
form is 

      
   

11 12

21 22

,
K s K s

K s
K s K s

 
  
 

 (5) 

Where 

 
4 3 2

11 4 3

1.272 30.83 586.5 634.2 110.5

62.15 489.1 0.4541

s s s s
K

s s s

    


  
 

 
4 3 2

12 4 3

0.3966 21.45 159.2 133.8 16.01

62.15 489.1 0.4541

s s s s
K

s s s

    


  
 

 
4 3 2

21 4 3

0.05896 45.49 45.14 26.65 54.69

62.15 489.1 0.4541

s s s s
K

s s s

   


  
 

Bode plot from input 2 to output 2
1.5

1

0.5

M
ag

ni
tu

de
 (

dB
)

0

-0.5
10-1 100 101 102 103

1.5

1

0.5

M
ag

ni
tu

de
 (

dB
)

0
10-1 100 101 102 103

190

185

180

P
ha

se
 (

de
g)

175

170
10-1 100 101

Frequecy (rad/s)

Bode plot from input 1 to output 1

102 103

190

185

180

P
ha

se
 (

de
g)

175

170
10-1 100 101

Frequecy (rad/s)
102 103

r (t) e (t) u (t) y (t)


K (s) G (s)



408 Journal of Marine Science and Technology, Vol. 28, No. 5 (2020) 

 

 
4 3 2

22 4 3

0.8815 16.34 713 679.2 8.532

62.15 489.1 0.4541

s s s s
K

s s s

    


  
 

With this 4th order robust controller, the Ballbot can be con-
trolled to stable at the origin without any problem.  

Remark: In this paper, we aim to design the 𝐻ஶcontroller in 
order to assure that the identified model can be used to design 
an existing robust controller design technique.  Here, the 
weighting functions (3) and (4) are not the best design function. 
The final performance of the controller can be improved de-
pending on the experience of the user.  For interested readers 
can consult (Gu et al. 2013) and reference therein. 

V. FIXED-STRUCTURE CONTROLLER DESIGN 
USING A CONVEX-CONCAVE OPTIMIZATION 

It is well known that the drawback of the mixed-sensitivity 
𝐻ஶ design method is to give a high-order controller.  In this 
research, we propose a fixed-structure robust controller design 
method using a convex-concave optimization technique (Hast 
et al. 2013).  This framework was for a SISO system and ex-
tended to the MIMO system (Boyd et al. 2016).  The following 
extension requires some more complicated mathematic. Our 
system is a MIMO system by the system in the 𝑥-axis, and the 
𝑦-axis is nearly no correlation.  Instead of using an intricate 
MIMO design, in this work, we use a SISO design for each 
input-output transfer function.  The model is turned to be a de-
coupling model with standard similarly transformation 
(Antsaklis and Michel 2006).  Then, we can design a SISO 
controller for each channel separately.   

1. Robust PI + phase-lead controller structure 

The fixed-structure controller used in this work is 

  
1

.
1

I
PI P d

s
K bK s K K

ss
a


  


 (6) 

There are five parameters to be turned, namely 𝐾௉ ,𝐾ூ,𝐾஽,𝑎, 
and 𝑏.  However, we can fix the phase-lead part the reduce the 
number of search parameters with a standard phase-lead de-
sign procedure (Qiu and Zhou, 2010).  

A phase-lead term is significant for the controller because 
the phase-lead term does improve not only the damping ratio 
of the closed-loop system but also limits the gain of the con-
troller at high-frequency.  Parameters 𝑎 and 𝑏 in (6) can be se-
lected  according to the required adding phase-margin 𝜙෨௠ at 
the designed crossover frequency 𝜔௖.  By considering the Ball-
bot as a pendulum, the natural frequency of the robot is about 
3.13 rad/sec.  We selected the crossover frequency at least two 
times higher than the natural frequency at 𝜔௖ ൌ 7 rad/sec, then 
𝑎 and 𝑏 can be determined as follows 

 
1 sin

1 sin
m

m

a

b










  (7) 

 cab   (8) 

Here the value of ϕ෨m is 40o, then we obtain a=14.4928 and b = 
3.2642. 

2. Optimization 

Searching the optimal values of the parameters KP, KI, and 
KD.  We use a convex-concave procedure proposed by (Hast et 
al. 2013) for each input-output of the robot separately. 

In this work, the constraint is a circle constraint (Hast et al. 
2013).  The stable closed-loop system must have 𝐿ሺ𝑗𝜔ሻ in the 
Nyquist’s diagram lines outside this circle with center 𝑐 and 
radius 𝑟 and equivalent to 

     0,r L j c r g       (9) 

where  =
T

P I DK K K is a vector of the designing parameters. 

The control objective of this work is to minimize the Integrated 
Error (IE) of the controlled system.  In (Åström and Hägglund, 
2006), it has been shown that  

  
0

1
IE

I

e t dt
K


   (10) 

Then the minimize IE is equivalent to the maximize 𝐾ூ as 
an optimization objective.  Using a linearization around the 
frequency point, we obtain the optimization problem as follow: 

 
, ,

maximize
P I D

I
K K K

K  (10) 

 
  
    subject to ,

k

k
k

L j c
r L j c

L j c






   
 
 
e  (11) 

Where ℜ𝔢 and ሺሻ∗ denote the real part value and complex 
conjugate, respectively.  Also, Lk is a loop-gain transfer func-
tion, and the subscript 𝑘 denotes the iteration index of the op-
timization round. 

3. Robustness Constraints 

Since the model of the robot cannot cover all information 
of the robot, one has to define robust constraints carefully.  In 
the circle criteria framework, there are two parameters are tun-
able, namely, Ms and Mt, which are defined as a ‖Sሺsሻ‖∞and 
‖Tሺsሻ‖∞, respectively.  Here Sሺsሻ is a sensitivity function, and 
𝑇ሺ𝑠ሻ is a complementary sensitivity function (Skogestad and 
Postlethwaite 2005), as follows: 
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Fig. 9. Control results of PI+phase-lead controller and reduced order 𝑯ஶ 

controller. 

 
 

        
 

1
,

1 1

L s
S s T s

L s L s
 

 
 (12) 

For the robustness of the system, the sensitivity function indi-
cates that L(jω) should be outside two circles on the Nyquist's 
diagram (Doyle et al. 1990).  One circle centers at cs=1 and 
radial rs=1/Ms  and a second circle centers at 

2 2= / ( 1)t t tc M M   and radius 2= / ( 1)t t tr M M  . 

4. Resulted in Robust PI + phase-lead controller 

With 𝑎 and 𝑏 parameters designed above, and the initial 
values KP=22, KI=3, and KD= -11 for both input-output chan-
nels.  Then, the initial PI + phase-lead controller is 

  
13 14.492822 11
1

3.2642

PI

s

K s
ss


  


 (13) 

The original optimization problem is infinite in terms of the 
frequency point.  The frequency range is gridding of 1000 
points from 0.07 Hz to 100 Hz in the logarithm scale to make 
it finite.  The optimal problem is solved using convex optimi-
zation with the CVX package (Grant and Boyd 2014) on 
MATLAB.  The results controller for 𝑥-axis and 𝑦-axis are 
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Fig. 10. The time-domain plots of the closed-loop systems with  the 

PI+phase-lead controller : degree (above), RPM (below). 

 
 

 
Fig. 11. The time-domain plots of the control signal of the closed-loop sys-

tem with  the PI+phase-lead controller : 𝒙 െ axis (above), 𝒚 െ axis 
(below). 

 
 

VI. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The controllers are applied to control the Ballbot on the 
MyRIO board under LabVIEW real-time environment.  The 
sampling rate is set at 10 msec.  Two motors share the same 
control input for the 𝑥-axis, and the other two motors share the 
same control input for the 𝑦-axis.  The control objective is to 
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stabilize the robot at the ሺ0,0ሻ position.  As shown in Fig. 9, 
both controllers can stabilize the Ballbot at the reference posi-
tion.  The error is not higher than േ0.2௢.  The time-domain 
plots of the closed-loop system in terms of degree and RPM 
are shown in Fig. 10 for the closed-loop with the PI+phase-
lead control.  The closed-loop robot operates smoothly.  The 
controller signals of both the 𝑥-axis and 𝑦-axis are sinusoidal 
shapes, reacting to the output of that axis, as shown in Fig. 11.  

In terms of implementation, the PI+phase-lead is comforta-
ble to apply directly to the LabVIEW environment on MyRIO 
board because the parameters of the control can fill in the 
standard block.  So this control structure is suitable for most of 
the hardware systems not only in the lab-scale but also can be 
applied to implement on the industrial controller equipment 
like programmable logic controller (PLC).  Moreover, since 
the controller has a low-order configuration, it has less numer-
ical issues than the high-order controller.  Even though we can 
reduce the order of the high-order controller, but it reduces the 
performance of the controller. 

VII. CONCLUSION 

In this work, we show how to use the identification frame-
work and the fixed structure robust PI+phase-lead controller 
design with a convex-concave optimization to control a Ball-
bot.  The method applies to a MIMO Ballbot system.  By ex-
periments, it turns out that the identification model of Bollbot 
and a PI+phase-lead controller design framework is suitable 
for using to control a Ballbot 
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