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ABSTRACT 
The Noniterative Correlation-based Tuning (NCbT) is one 

of the data-driven controller tuning methods which directly 
tune controller parameters from input/output data set of a plant .  
The NCbT is based on the correlation approach to robustly 
tune controller parameters using a noisy input/output data set. 
Since the NCbT guarantees closed-loop stability only for the 
situation where the data is acquired, a plant fluctuation is not 
taken into consideration, which may lead to degradation of 
control performance and/or destabilization of the closed-loop 
system .  In this paper, we virtually produce input/output 
data sets of the plant with various gain and/or phase fluc-
tuation to derive data-driven constraints for the prespecified 
gain and phase margins.  

I. INTRODUCTION 
Model-based controller tuning methods have received 

at- tention in recent years.  However, highly complex plants 
have appeared with the advancement of technologies and 
equip- ments, and it is difficult to accurately describe their 
dynamics with a limited complexity.  Under this background, 
data-driven controller tuning methods are actively studied 
(Hjalmarsson et al., 1998; Campi et al., 2002; Karimi et al., 
2004; Karimi et al., 2007; Saeki, 2014; Date et al., 2018).  
In these studies, a controller is designed easily by giving the 
reference model and solving a optimization problem using an 
input/output data set of a plant instead of using a parametric 
model.  In the Iterative Feedback Tuning method (IFT) 
(Hjalmarsson et al., 1998) and the Iterative Correlation-based 
Tuning method (Karimi et al., 2004), a non-convex 

optimization problem is treated.  These methods require 
multiple experiments to evaluate a cost function to design a 
controller.  In the Virtual Reference Feedback Tuning (VRFT) 
(Campi et al., 2002), a convex optimization is treated, which 
requires just a single experiment to evaluate a cost function.  
However, this method suffers from the noise on the collected 
output data when a controller is designed. 

In the Noniterative Correlation-based Tuning (NCbT) 
(Karimi et al., 2007), a convex optimization problem to design 
a controller is formulated by using a set of input/output data 
as well as the VRFT.  Moreover, the NCbT is insensitive to the 
noise compared with the VRFT since the correlation approach 
is adopted.  However, if an unsuitable reference model is given, 
a designed controller may destabilize the closed-loop system.  
In addition, it is difficult to give analyses of stability and sta-
bility margin of the closed-loop system since a plant model is 
unavailable in the data-driven approaches. 

To solve this problem, the methods to check closed-loop 
stability using input/output data is developed (Sala and Es- 
parza, 2005; Park and Ikeda, 2005).  Moreover, the stability 
constraint based on the small gain theorem is proposed to 
directly design a stabilizing controller and is incorporated into 
a design problem (Heusden et al., 2011).  This constraint just 
guarantees stability of the closed-loop system but does not 
explicitly address robustness issue.  Hence, a plant fluctuation 
might destabilize the closed-loop system if stability margin 
is not enough ensured.  Gain and phase margins are typical 
stability indeces for robustness in classical control theory, 
which are still used in many fields of applications.  In data- 
driven approach, the explicit stability margins such as gain and 
phase margins should be incorporated into controller design.  
The method to guarantee gain and phase margins by using 
the frequency responses of the open-loop transfer function is 
developed (Date et al., 2018).  However, the design problem 
in this method is complicated because the constraints for the 
stability and the stability margin are described in different 
forms. 

For this problem, this paper proposes constraints to guar- 
antee classical stability margins, gain and phase margins, for 
data-driven controller tuning methods.  These constraints 
are formulated easily using input/output data sets by extending  
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Fig. 1.  Model reference control problem 

 
 

the existing stability constraint.  So, the stability constraint and 
the stability margin constraints are unified in the same frame-
work.  Then, the effectiveness of the proposed method is 
shown by numerical simulations. 

Throughout this paper, a discrete-time transfer function 
P(z−1) is denoted by P for simplicity of notations, where z−1 

is the backward shift operator. 

II. NONITERATIVE CORRELATION-BASED 
TUNING 

The NCbT proposed by Karimi et al.  is one of the data- 
driven controller tuning methods to solve a model reference 
control problem.  In this section, we review the design problem 
of the NCbT. 

1 Problem Setup  
A model reference control problem aims to find the con-

troller parameter vector θ that minimizes the cost function 
JMR(θ) which is formulated in the frequency domain as 

 ( ) 2

2
1

( ) ,
( )MR

PC
J M

PC+
= −

θ
θ

θ
 (1) 

where M and P denote a reference model given by a designer 
and an unknown linear time-invariant plant, respectively.  C(θ) 
is a discrete-time transfer function of the linearly parameter- 
ized controller to be designed as 

 T( ) ,C =θ β θ  (2) 

where 

 T
1 2 ., , ],[ nθ θ θ= θ   

β is a linear discrete-time basis function of the controller de-
fined as 

 1 1 1
1 2, , , ,[ ( ) ( ) ( )]T

nz z zβ β β− − −= β  

where nℓ is the number of controller parameters. 
By the Parseval’s theorem, the time-domain cost function 

corresponding to JMR(θ) is described as 

 
Fig. 2.  Equivalent model reference control problem 
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where W is an appropriate filter which will be computed 
subsequently such that the criterion Js(θ) becomes a good ap-
proximation of JMR(θ).  If v(t) = 0, Js (θ) is asymptotically 
equivalent to JMR (θ).  There are three difficulties in mini-
mizing Js (θ) as follows: 

• It is difficult to find the global minimum because Js(θ) 
is nonlinear for θ. 

• Multiple experiments are required to evaluate Js(θ) be- 
cause the input data to the plant, u(θ, t), relies on θ. 

• Js(θ) is not equivalent to JMR(θ) because v(t)≠0 in many 
cases. 

These problems are solved in the NCbT 

2. Design Problem of NCbT 
For the first difficulty, the convex approximation is intro- 

duced.  Let C* be an ideal controller which achieves a reference 
model M, that is 

 
1

PCM
PC

∗

∗=
+

 (3) 

Assuming that a designed controller C(θ) approaches to 
C* enough, ( ) .1 / 1 1 /( ) (1 )PC PC∗+ +θ   JMR(θ) is then ap-
prox- imated as Jc(θ) by a convex function for θ as 

 ( ) 2

2
1( ) ( )cJ M M PC= − −θ θ  (4) 

For the second difficulty, the positions of P and C(θ) are 
swapped to fix the input of P and not to depend on θ.  As 
a result, it is possible to evaluate Jc(θ) with a single experi-
mental data set. 

For the third difficulty, the correlation approach is intro- 
duced.  Define f (θ) as 

 ( ) ( )
1

1 , ,( )
T

w s
t

t t
T

ε
=

 =  θ ζ θf  (5) 

where T is the number of samples in one period of a reference 
signal r(t), and ζw(t) is a vector of instrumental variables 
correlated with rw(t) and uncorrelated with v(t) given by 
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Fig. 3.  Closed-loop system with an ideal controller 

 
 
 ( ) T[ ( ) ( ], )1 , , ( )w w w wt r t l r t l r t l= + + − −ζ  

with rw(t) = Wr(t) and l is a sufficient large integer.  With an 
approximation of 1 − M = 1/(1 + PC∗), properly chosen W 
and sufficiently large l, f T (θ) f (θ) is asymptotically equivalent 
to JMR(θ), and influence of noise v(t) uncorrelated with r(t) 
can be reduced.  Since f T (θ) f (θ) is convex for θ, optimal 
parameters can be derived by solving the following convex 
optimization problem: 
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3. Stability Constraint Based on Small Gain Thorem 
The controller C(θ) designed by the NCbT does not always 

stabilize plants because C(θ) is just designed to minimize J(θ). 
In this section, a stability constraint based on the small gain 
theorem is introduced to guarantee closed-loop stability in 
(Heusden et al., 2011).  A closed-loop system consistin of 
a controller C(θ) and a stable and minimum phase plant is 
represented by an ideal controller C∗ and a controller pertur-
bation C(θ) − C∗ as Fig. 3.   Then, a stabilization problem of a 
closed-loop system by C(θ) in Fig. 3 can be regarded as a 
robust stabilization problem for an additive perturbation C(θ) 
− C∗. By equivalently converting Fig. 3 into Fig. 4 and assum-
ing that C∗ stabilizes P, the sufficient condition of stability of 
the closed-loop system based on the small gain theorem is 
given as 

 ,( ) ( ) 1Gδ ∞= < θ θ  (7) 

where 
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Define εs(θ, t) as 
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Fig. 4.  Small gain theorem 

 
 
where G(θ) can be regarded as a transfer function from r(t) 
to εs(θ, t) in Fig. 2 and y0(t) is the output data of the plant P 
when r(t) is applied.  It is known that δ(θ) can be estimated 
by using spectral analysis with r(t) and εs(θ, t) (Ljung, 1999) 
as 
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where ( )ˆ ,
sr nε ωΦ θ  is a power cross-spectral density between 

r(t) and εs(θ, t), ˆ ( )r nΦ ω  is a power spectral density of r(t).

( )ˆ ,
sr nε ωΦ θ  and ˆ ( )r nωΦ  can be calculated as 
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Where ( ),
srR ε τθ   is a cross-correlation function between r(t) 

and εs(θ, t) and ( )rR t  is an auto-correlation function r(t) de-
fined as 
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As a result, the convex optimization problem of the NCbT to 
guarantee closed-loop stability is formulated as 

 ( )ˆ arg min ,J=
θ

θ θ  

subject to 

 ˆ( ) 1δ <θ  
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Fig. 5.  Closed-loop system with gain fluctuation kP 

 
 
The parameter derived by the above problem can stabilize the 
closed-loop system for the situation where input/output data 
set is collected, but does not always stabilize the closed-loop 
system when the plant is fluctuated.  Therefore, the closed-loop 
system may be unstable by a little plant perturbation. 

III. PROPOSED METHOD 
In model-based approaches, stability margins such as gain 

margin and phase margin are evaluated using the plant model.  
However, in data-driven approaches, it is difficult to evaluate 
stability margin since plants model is not available.  It is also 
difficult to adjust controller parameter to establish a prespeci-
fied stability margin after optimization.  In this section, con-
straints for data-driven approaches to guarantee gain and 
phase margins are proposed. 

1. Constraint for Gain Margin 
If a controller stabilizes a gain-fluctuated plants kP (k > 0) 

as well as P, gain margin of 20log k [dB] is at least estab- 
lished.  To guarantee gain margin of 20log k [dB] in data-driven 
controller design methods, C(θ) should stabilize not only P but 
also kP.  The sufficient condition for stabilizing P is formulated 
in the previous section.  In this subsection, we will formulate 
the constraint to stabilize kP, and then the convex optimization 
problem to guarantee gain margin. 

To stabilize a perturbed plant kP by a controller C(θ) 
is equivalent to stabilize P by a perturbed controller kC(θ). 
For a closed-loop system consisting of kC(θ) and P, con-
sider a controller perturbation from an ideal controller C∗ as 
Fig. 5.  Then, a stabilization problem of the closed-loop system 
in Fig. 5 can be regarded as a robust stabilization problem 
for the additive perturbation kC(θ) − C∗.  By equivalently 
converting Fig. 5 into Fig. 6 as similarly in the previous 
section, the sufficient condition of stability of the closed-loop 
system with kP based on the small gain theorem is given as 

 ,( ) ( )  1g gGδ ∞= <θ θ  (14) 

where 
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Fig. 6.  Small gain theorem for gain fluctuation 

 
 
Define εg(θ, t) as an output of Gg(θ) when r(t) is applied: 
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where yk (t) is the output data of kP when r(t) is applied.  If 
P is linear time-invariant and v(t) = 0, yk (t) = ky0(t) for its 
linearity.  We can compute εg(θ, t) from r(t) and ky0(t), and 
then, we can estimate δg(θ) using spectral analysis with r(t) 
and εg(θ, t) as 

 

{ }ˆ  0( )

ˆ ˆ

ˆ ,ˆ
ˆ

2 / , 0,1, , 1 / 2,

( ) max ( ) ,

( )
( )

( )
( )

n r n

g

g g

r n
g

r n

n

G

G

n T n T

ω ω

ε

δ

ω
ω

ω π

Φ ≠
=

=
Φ

Φ
= = −

θ θ

θ
θ  (16) 

where ( )ˆ ,
gr nε ωΦ θ   is an estimate of a power cross-spectral 

density between r(t) and εg(θ, t).  ( )ˆ ,
gr nε ωΦ θ  can be calcu-

lated as 
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where ( )ˆ ,
grR ε τθ  is an estimate of a cross-correlation function 

between r(t) and εg(θ, t) defined as 

 ( )
1

(ˆ 1,( , ,) )
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gR t r t
Tε τ ε τ

=

−= θ θ  (18) 

In many practical situations, v(t) ≠ 0.  However, since Gg(θ) 
is estimated using a cross-correlation function between r(t) 
and εg (θ, t), the estimate of Gg(θ) is enough accurate even 
when v(t) ≠ 0.  Note that k is an arbitrary positive constant 
to determine gain margin to be guaranteed.  By determining 
k, the convex optimization problem of the NCbT to guarantee 
gain margin of 20 log k [dB] is formulated as 
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Fig. 7.  Generation of εg(θ, t) for gain fluctuation 

 
 

 
Fig. 8.  Closed-loop system with phase lag e− jϕ P 

 
 

 ( )arg min ,J
θ

θ  

Subject to 

 ( ) ( )ˆ ˆ  1 and  1.gδ δ< <θ θ  

2. Constraint for Phase Margin 
A constraint for phase margin is also derived as same 

way in that for gain margin.  If a controller stabilizes a 
phase-shifted plant e− jϕ P as well as P, phase margin of ϕd 

= ϕ×180/π [deg] is at least established.  To guarantee phase 
margin of ϕd in data-driven controller design methods, C(θ) 
should stabilize not only P but also e− jϕ P.  In this subsec-
tion, we will formulate the constraint to stabilize e− jϕ P, 
and then the convex optimization problem to guarantee 
phase margin.  As similar to gain margin, to stabilize the 
phase-shifted plant e− jϕ P by C(θ) is equivalent to stabilize 
P by a phase-shifted controller e− jϕ C(θ).  For a closed-
loop system consisting of e− jϕC(θ) and P, consider a con-
troller perturbation from an ideal controller C∗ as Fig. 8.  
Then, a stabilization problem of a closed-loop system in 
Fig. 8 can be regarded as a robust stabilization problem 
for the additive perturbation e− jϕ C(θ) − C∗.  We can notice 
that the constraint for phase margin is easily obtained by 
replacing kP and kC(θ) in the previous subsection by e− jϕ 

P and e− jϕ C(θ), respectively.  By equivalently converting 
Fig. 8 into Fig. 9, the sufficient condition for stability of 
the closed-loop system with e− jϕ P based on the small gain 
theorem is given as 
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= <θ θ  (19) 
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Fig. 9.  Small gain theorem for phase lag 

 
 

 
Fig. 10.  Generation of εp(θ, t) for phase fluctuation 

 
 
Define εp(θ, t) as an output of Gp(θ) when r(t) is applied: 
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where yp(t) is the output data of the phase-shifted plant e− jϕ P 
when r(t) is applied.  The problem is how to estimate yp(t) 
using y0(t).  Since yp(t) is the output of e− jϕ P, we should ma-
nipulate y0(t) not in time-domain but in frequency-domain, 
that is, its Fourier transform Y0(ω), where 
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yp(t) is then calculated as the inverse Fourier transform of 
0 .( )je Yφ ω−    Finally, we can estimate ( )pδ θ   using spectral 

analysis with r(t) and ( )p tε θ,  as 
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where ( )ˆ ,
pr nε ωΦ θ   is an estimate of a power cross-spectral 

density between r(t) and εp(θ, t).  ( )ˆ ,
pr nε ωΦ θ  can be calcu-

lated as 
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where ( )ˆ ,
prR ε τθ  is an estimate of a cross-correlation function 

between r(t) and εp(θ, t) defined as 

 ( )
1

,( ) (1ˆ , , )
p

T

r p
t

R t r t
Tε τ ε τ

=

= −θ θ  (23) 

As stated in estimating yk (t), v(t) does not affect the estimate 
of yp(t) due to the same reason in estimating yk (t).  Note that 
ϕ is an arbitrary constant to determine phase margin to be 
guaranteed.  By determining ϕ, the convex optimization 
problem of the NCbT to guarantee phase margin of ϕd [deg] 
is formulated as 

 ( )ˆ arg min J=
θ

θ θ  

subject to 

 ( ) ( )ˆ ˆ1 and 1pδ δ< <θ θ  

3. Constraints to Guarantee Gain and Phase Margins 
Gain and phase margins are often simultaneously imposed 

in actual design problems.  Note that the above mentioned con-
straints for gain and phase margins are convex with re- 
spect to the controller parameter θ.  The convex optimization 
problem of the NCbT to simultaneously guarantee gain margin 
of 20log k [dB] and phase margin of ϕd [deg] is formulated 
as 

 ( ) ,ˆ arg min J=
θ

θ θ  

 ( ) ( ) ( )ˆ ˆ ˆ1 1, and 1.g pδ δ δ< < <θ θ θ  

4. Robustness Issue 
In practical applications, simultaneous fluctuations of gain 

and phase are often encountered.  Since gain/phase margin just 
guarantees closed-loop stability only for single fluctuation of 
gain/phase, the closed-loop system is not always stabilized 
for simultaneous fluctuations of gain and phase even for small 
changes of gain and phase.  In this subsection, a stabilization 
problem for simultaneous fluctuations of gain and phase is 
addressed for more robustness by extending the constraints for 
gain and phase margins described in the previous subsections. 

Consider simultaneously fluctuated plant, ke− jϕ P (1 ≤ k ≤ 
kr , 0 ≤ ϕ ≤ ϕr ).  In order to stabilize ke− jϕ P for all k and 
ϕ, an infinite number of constrains are required, which is not 
intractable.  A practical solution for this difficulty is to divide 
2 closed intervals, [1, kr ] and [0, ϕr ], for k and ϕ into enough 
small regions and to impose gain and phase constraints for all 
combination of a pair (k, ϕ).  Define a gridded point kng and 
ϕnp as 
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where enough large integers, Ng and Np, denote the number of 
gridded points for the intervals for k and ϕ, respectively.  Then 
a stabilization problem for simultaneous fluctuations of gain 
and phase is approximated by that for np

g

j
nk e φ− P for all ng and 

np.  As similar way in constraints for gain and phase margins, 
the sufficient condition of stability of the closed-loop system 
with np

g

j
nk e φ− P based on the small gain theorem is given as 

 , ,( )  1,( )
g p g pn n n nGδ ∞= < θ θ  (24) 

where 
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Note that Eq.(24) is a straightforward extension of the con- 
straints in the former subsections, and includes Eqs.(14) and 
(19) as special cases.  Define , ),(

g pn n tε θ   as an output of 

, ( )
g pn nG θ  when r(t) is applied: 
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where , ( )
g pn ny t   is the output data of .np

g

j
nk e Pφ−   The esti-

mate of , ( )
g pn ny t  is obtained as the inverse Fourier transform 

of ( )0 ,
ˆ.np

g g p

j
n n nk e Yφ ω δ−   can be estimated as similar in con-

straints for gain and phase.  Finally, the convex optimization 
problem of the NCbT to guarantee simultaneous fluctua-
tions of gain and phase is formulated as 

 ( )ˆ arg min ,J=
θ

θ θ  

subject to 

 ,
ˆ 1,

0,1,. .

( )

.., , 0,1,...,
g pn n

g g p pn N n N

δ <

= =

θ
 

Note that ,
ˆ

g pn nδ  is, of course, convex with respect to θ. 
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Table 1. Design Results for Simulation I 
 case 1 case 2 

J(θ) 0.4907 0.4930 
ˆ( )δ θ  0.9999 0.9956 
ˆ ( )gδ θ  1.0019 0.9999 

ˆ ( )pδ θ  1.0193 0.9999 

GM [dB] 0.728 38.4 
PM [deg] 0.0764 48.2 

 
 

 
Fig. 11.  Bode plots of L(θ) for Simulation I 

 
 

IV. NUMERICAL SIMULATIONS 
In this section, we show the effectiveness of the proposed 
method through 2 numerical simulations: The first one is com-
parison of the design results with and without constraints for 
gain and phase margins.  The second one shows the design 
result for simultaneous fluctuations of gain and phase of the 
plant to establish enough robustness. 

1. Simulation I 
The reference model M and the plant P are given as 
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Note that P is only used to acquire the input/output data set for 
design.  The linearly parameterized controller C(θ) is de-
fined as 
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Fig. 12.  Vector locus of L(θ) for Simulation 

 
 

 
Fig. 13.  Vector locus of˜L(θ) for Simulation I 

 
 
which is a discrete-time PID controller.  The sampling time 
Ts is set to 1 ms.  Control requirements for gain and phase-
margins, k and ϕ, are set as k = 10  and ϕ = 2π/9 which 
are determined to establish 10 dB of gain margin and 40 deg 
of phase margin, respectively.  For data acquisition, 3 periods 
of a pseudo random binary signal (PRBS) of length N = 3 × 
(214 − 1) = 49149 is applied to the plant. 

We refer to simulations with and without constraints for 
gain and phase margins as case 1 and case 2, respectively. 
Only stability constraint δ(θ) < 1 is imposed in case 1, while 
δg(θ) < 1 and δp(θ) < 1 are imposed as well as δ(θ) < 1 in case 
2.  The tuning results of case 1 and 2 are shown in Table 1.  The 
Bode plots of the open-loop transfer function L(θ) = PC(θ) 
are shown in Fig. 11.  Table 1 shows that the evaluated value 
J(θ) of case 2 is larger than that of case 1.  In Fig. 11, we can  
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Table 2. Design Results for Simulation II 
 case 1 case 2 case 3 

J(θ) 
GM [dB] 
PM [deg] 

7.2 × 10 −4 

47.0 
49.0 

7.5 × 10−4 

46.0 
50.9 

1.7 × 10−3 

43.4 
59.6 

 
 

see that the gain-crossover frequency of case 2 is lower than 
that of case 1.  However, case 1 does not achieve δg(θ) < 1 and 
δp(θ) < 1, while case 2 does.  Fig. 12 shows that the vector 
locus of L(θ) of case 1 has a little stability margin, while that 
of case 2 has enough gain and phase margins.  From Table 
1. and Fig. 12, we can confirm that the proposed constraints 
guarantee 10 dB of gain margin and 40 deg of phase margin, 
which means that the specifications for stability margins are 
satisfied by the proposed data-driven constraints. 

The fluctuated plant is given as P  = 3𝓏−2 × P to check 
robustness for the plant fluctuation.  The vector loci of the fluc-
tuated open-loop transfer function L  (θ) = P C (θ) are shown in 
Fig. 13.  Fig. 13 shows that the vector locus of L  (θ) for 
case 1 is over the critical point while that of case 2 is not. 
The controller of case 1 destabilizes the closed-loop system 
with the fluctuated plant, but that of case 2 does not.  We can 
confirm that the proposed method improves robustness for the 
plant fluctuation. 

2. Simulation II 
The reference model M and the plant P are given as 
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kr and ϕr are set to kr = 101/4 and ϕr = 2π/9 to establish gain 
margin of 5 dB and phase margin of 40 deg.  Ng = Np = 8 
and data length of the reference signal r(t) is given as N 
=4 × (214 − 1) = 65532, which corresponds to 4 periods of 
PRBS.  The other design conditions are same as in Simula-
tionI.  In Simulation II, case 3 is evaluated for the case 
where δng ,np (θ) < 1 for all combination of (ng, np) in addition 
to case1 and 2. 

The tuning results for all cases are listed in Table 2.  Re-
quirements for gain and phase margins are established for all 
cases.  Fig. 14 shows the vector loci of L(θ) for all cases. 
In Fig. 14, the coordinates of the points A, B, C, and D are (-
1, 0), (−10−1/4, 0), (− cos(2π/9), − sin(2π/9)), and (−10−1/4 

cos(2π/9), −10−1/4 sin(2π/9)), respectively.  The vector loci 
of L(θ) for case 1 and 2 intersect the shaded area surrounded 
by 4 points on the complex plane, A, B, C, and D.  This  

 
Fig. 14.  Vector locus of L(θ) for Simulation II 

 
 

means that the control system might be destabilized even 
when the simultaneous changes in gain and phase smaller than 
5 dB and 40 deg, respectively occurs.  The simultaneous 
changes of 5 dB in gain and of 40 deg in phase clearly desta-
bilize the closed-loop system for case 1 and 2.  In case 1, since 
the stability coonstraint is only imposed, the vector locus of 
L(θ) is shaped so as to avoid the point A (critical point).  The 
vector locus of L(θ) for case 2 is also shaped so as to avoid 
the points B and C as well as the point A.  On the other hand, 
the vector locus of L(θ) for case 3 does not enter the shaded 
area, which means that the control system establishes enough 
stability margins for simultaneous gain and phase changes.  
In fact, the vector locus of L(θ) does not intersects the point 
A even when the simultaneous changes of 5 dB in gain and 
of 40 deg in phase occurs.  This is because the constraints 
are imposed for all combination of (ng, np) finely gridded in 
the shaded area.  As a result, the vector locus of L(θ) is shaped 
so as to avoid the shaded area.  Case 3 achieves higher robust-
ness at the expense of J(θ). 

V. CONCLUSIONS 
This paper proposed the constraints to guarantee arbitrary 

gain and phase margins for data-driven controller tuning meth- 
ods.  These constraints are extended easily from the standard 
stability constraint based on the small gain theorem.  The ef-
fectiveness of the proposed method is verified through the 
simulation examples.  As future works, implementation on the 
real applications and reduction of conservativeness caused by 
the small gain theorem should be tackled. 
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