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ABSTRACT 
The state constraint problem is an essential topic in control 

theory, wherein control methods using a control barrier func-
tion (CBF) and a revived transformation have been recently 
proposed.  However, a way of designing the CBF is yet to be 
developed in a constrained space.  In this study, we propose a 
CBF design method by using a revived transformation.  Our 
method can design a CBF in a constrained space by utilizing a 
diffeomorphism from an unconstrained space.  We demon-
strate the effectiveness of the proposed method by human as-
sist control design and computer simulation. 

I. INTRODUCTION 
Considering state constraints is essential in control theory.  

For example, the movable field in mobile robot control and the 
rated current in motor control are typical state constraints. 

One of the design tools for the state constraint problem in-
volves using a control Lyapunov function (CLF).  Control law 
designs with a CLF are often used to design feedback control-
lers for nonlinear systems.  More recently, several control 
methods have been proposed that use control barrier functions 
(CBFs) for the state constraint problems (Ames et al., 2017; 
Takano and Yamakita, 2018; Zheng et al. 2019; Kolathaya and 
Ames, 2019; Srinivasan et al., 2018; Wieland and Allgower, 
2007; Romdlony and Jayawardhana, 2016).  The CBF can be 
considered as an extension to the definition of the CLF, and a 
control law combining the CLF and the CBF has been pro-
posed (Mahony and Jiang, 2005; Tee et al., 2009; Romdlony 
and Jayawardhana, 2014).  The above studies mainly consider 
stabilization problems.  However, they do not discuss human 
assist control.  Nakamura et al. (2019) proposed a relaxed CBF 
based on the CBF proposed by Ames et al. (2015, 2017) and 
that of Wieland et al. (2007).  Moreover, a safety assist control 

that uses a CBF was proposed (Nakamura et al., 2019).  How-
ever, CBF designs are generally difficult; to the best of our 
knowledge, a method of designing the CBF has yet to be es-
tablished (Xiao and Belta, 2019).  

In this paper, we propose a method of designing a CBF by 
using the revived transformation proposed by Kimura et al. 
(2015).  The revived transformation is a control technique for 
the state constrained control problem and involves designing 
coordinates and inputs transformations. 

We demonstrate that the CBF property in a constrained 
space holds under a diffeomorphic coordinate transformation 
if the CBF in the unconstrained space is a proper function.  
Thus, if the revived transformation is given, we can design the 
CBF in the constrained space.  We confirmed the effectiveness 
of the proposed method using an example.  Finally, we com-
pared the CBF in Nakamura et al. (2019) to the CBF using the 
proposed method.  The results demonstrate the superiority of 
the proposed method. 

II. PRELIMINARIES 
In this section, we introduce basic definitions of mathemat-

ical notations, terms, and their fundamental properties used in 
the paper. 

1. Revived system transformation (Kimura et al., 2015) 
We consider the following control system: 

 ( ) ( )( )hx f x g x u u= + + , (1) 

where x  X = n is a state, u  m is an input, uh:  → m is 
a human input, and f: n → n and g: n → n×m are smooth 
mappings.  Moreover, the state space 𝑋 denotes a constrained 
space; that is, x  X implies that the state constraint is satisfied, 
otherwise 𝑥  n\X  violates the state constraint. 

Consider a coordinate transformation ϕ: n → X.  Then, the 
virtual system of (1) on 𝑋 becomes as follows: 

 ( ) ( )( ) ( )( )( )
1

hf g u uφξ ξ φ ξ φ ξ
ξ

−
 ∂  = + +   ∂ 

 , (2) 

where ξ = ϕ-1(x)  n .  The revived transformation is then 
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defined as follows by using an input transformation ψ: 
n × m → m. 
 
Definition 1 (Revived system transformation) Consider (1), 
a C1 diffeomorphism ϕ: n → X, and an input transformation 
ψ: n × m → m .  Then, a pair of mappings (ϕ, ψ)  of 
ϕ: Ξ → X; ξ α x, ψ: Ξ × m→ m; (ξ, v, vh) α (u, uh)  is said 
to be a revived system transformation if a virtual system holds 
the following: 

 

1

( ) ( ( )) g( ( ))( ( , , ))

( ) g( )( ),

h

h

f v v

f v v

φξ ξ φ ξ φ ξ ψ ξ
ξ
ξ ξ

−
 ∂= +    ∂ 

= + +


 (3) 

where ξ  n is a virtual state, v  m is a virtual control input, 
and vh:  → m is a virtual human input. 

To design a revived transformation, we assume the follow-
ing conditions. 

 
Assumption 1 g(x) in (1) has full column rank for all x  X, 
and matrix G(x) defined by the following, is non-singular for 
all x  X : 
 ( )( )

( )
g xG x
g x

+

⊥

 
=  
 

, (4) 

where g+(x) is a left inverse, and g(x) is a left zero divisor for 
all x  X. 

 
Assumption 2 Diffeomorphism ϕ: Ξ → X; ξ α x  satisfies the 
following conditions: 

 ( , )( ) ( ) n m mg x g Oφ ξ
ξ −

⊥ ∂⋅ ⋅ =
∂

, (5) 

 ( ) ( ) ( ) ( ( ))g x f g x fφ ξ φ ξ
ξ

⊥ ⊥∂⋅ ⋅ = ⋅
∂

, (6) 

Under Assumption 1 and 2, the following theorem holds. 
 

Theorem 1 Consider system (1) and suppose Assumptions 1 
and 2. 

Then, a pair of mappings (ϕ, ψ) is a revived transformation, 
where mapping ψ: n × m × m → m is defined as follows: 

 
( , , ) ( ( )) { ( ) ( )( )}

.( ( )) ( ( ))

h h

h

u v v g f g v v

g f u

φψ φ ξ ξ ξ
ξ

ξ

φ ξ φ ξ

+

+

∂= = ⋅ ⋅ + +
∂

− −
 (7) 

Proof. Under Assumption 2, note that the following equalities 
hold (Kimura et al., 2015). 

 
1

( ) ( ( )) ( ( )) ( ) ( )g g g gφ φξ φ ξ φ ξ ξ ξ
ξ ξ

−
+ ∂ ∂ = ∂ ∂ 

, (8) 

 

1

( ) [ ( ( )) ( ( )) ( ( )) ( )

( ( )) ( ( )) ( ( )) ( ).

f g g f

g g f f

φ φξ φ ξ φ ξ φ ξ ξ
ξ ξ
φ ξ φ ξ φ ξ ξ

−
+

+

 ∂ ∂+ ∂ ∂ 
− =

 (9) 

Then substituting (8) and (9) into (2), we obtain the following 
equation: 

 ( ) ( )( ).hf g v vξ ξ ξ= + +  (10) 

2. Control Lyapunov function (CLF) (Artstein, 1983) 
In this paper, we propose a CBF design method by using a 

 CLF defined as follows. 
 

Definition 2 (Control Lyapunov function (CLF)) We con-
sider (1) and a C1 continuously differentiable function V: 
n →  ≥ 0.  It is said to be a CLF if the following three con-
ditions hold. 
 
(A1) Non-negative function; V(x) ≥ 0 for all x  X. 
(A2) Proper function; ሼx | V(x) ≤ Lሽ is compact for any L  . 
(A3) The following equation holds: 

 
( , ( ), )

[ ( ) ( )( ( ))] 0,
m

m

h
u

f g h
u

inf V x u t u

inf L V x L V x u u t
∈

∈
= + + <





 (11) 

where LfV = ∂V ∂x⁄  f  and LgV = ∂V ∂x⁄  g. 
3. Control barrier function by Ames et al. (2014, 2017) 

Ames et al. proposed a reciprocal CBF, which has a differ-
ent framework from the one proposed by Wieland et al. 

In the reciprocal CBF, safe set X  n is supposed to be a 
closed set.  Moreover, Int(X) denotes the interior (without 
boundary) of set X, ∂X the boundary of X, respectively; we 
suppose that X is not empty and that it does not consist of only 
a single element. 

To define the reciprocal CBF, we need to define a function 
h: X → , such that the following three conditions hold: 

 
( ) 0
( ) 0
( ) 0 Int( ).

h x x X
h x x X
h x x X

≥ ∀ ∈
= ∀ ∈ ∂
> ∀ ∈

 (12) 

Then, the reciprocal CBF is defined as follows: 
 

Definition 3 (Reciprocal Control Barrier Function) Con-
sider system (1), a safe closed-set X  n, and a C1 differenti-
able function h(x) that satisfies (12).  Then, a C1 differentiable 
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function B: Int(X) →  is said to be a reciprocal CBF if there 
are three class K functions α1, α2 and α3 such that the following 
two inequalities hold: 

 
1 2

1 1( ) ,
( ( )) ( ( ))

B x
h x h xα α

≤ ≤  (13) 

 3inf [ ( ) ( )( ( )) ( ( ))] 0.
m f g h

u
L B x L B x u u t h xα

∈
+ + − ≤


 (14) 

Note that α3 must be a class K function and h(x)  0  for all 
x  ∂X due to the definition of a reciprocal CBF.  Then, (11) 
uniformly converges to the following inequality as a x → ∂X: 

 inf [ ( ) ( ) ] 0.
m f g

u
L B x L B x u

∈
+ ≤


 (15) 

4. Control barrier function by Nakamura et al. (2019) 
Definition 4 (Control Barrier Function) Consider (1).  A C1 
continuously differentiable function B: X →  is said to be a 
CBF if the following three conditions hold. 
 
(B1) Non-negative function; B(x) ≥ 0 for all x  X. 
(B2) Proper function; ሼx | B(x) ≤ Lሽ is compact for any L  . 
(B3) For any continuous mapping uh:  → m , there exist 

constants C, K > 0  such that the following inequality 
holds: 

 

inf ( , ( ), )

inf [ ( ) ( )( ( ))]

( ) .

m

m

h
u

f g h
u

B x u t u

L B x L B x u u t

KB x C

∈

∈
= + +

< +







 (16) 

For every relaxed CBF, 𝐵 must be infinity on a boundary of 
the safe set.  More precisely, for any convergence sequence 
(xi)i∈N such that xi → ∂X as i → ∞, B(xi) → ∞ as i → ∞. 

5. Safety assist control by using a CBF (Nakamura et al., 
2019) 
The following theorem holds by using a CBF: 
 

Theorem 2 We consider (1) and a CBF B: X →  satisfying 
condition (B3). 

Then, x(t)  X  for all t ≥ 0  and any continuous mapping 
uh: n ×  → m by the following control input u = k(x, t), 
 

( )2

( , )
0 ( )

( , ) ( ) ,( ) ( )
( )

Th
g

g

u k x t
I J

I x u J x
L B x I J

L B x

=
≤

 −= − >



 (17) 

where functions I: n × m →   and J: n →   are defined 
by the following equations, respectively. 

 
( , ) ( ) ( ) ( ),

( ) ( ) .
h f g hI x u L B x L B x u t

J x KB x C
= + ⋅

= +
 (18) 

Proof.  Note that LfB(x), LgB(x)  and uh(t) are all continuous 
mappings, and functions I and J are continuous.  Moreover, 
u → 0  as I → J  uniformly when LgB(x) ≠ 0 .  Hence, (17) is 
continuous if LgB(x) ≠ 0 .  Then, we prove the continuity of 
(17) on LgB(x)  0. 

According to (B3) in the definition of CBF, for all t0 ≥  0 
such that LgB(x(t0))  0, the following inequality holds: 

 0 0( ( )) ( ( )) .fB L B x t KB x t C= < +  (19) 

This implies that there exists ε > 0 such that the following ine-
quality holds: 

 0 0( ( )) ( ( )) .fB L B x t KB x t Cε= + ≤ +  (20) 

Since LgB(x)uh(t)  is a continuous mapping, there exists a 
neighborhood M  n ×  of x0 = x(t0) and t0 such that the fol-
lowing inequality holds:  

 ( ) ( ) ( , ) .g hL B x u t x t Mε≤ ∀ ∈  (21) 

Hence the following inequality holds for any (x, t)  M: 

 ( ) ( ) ( ) ( ) .f g hL B x L B x u t KB x C+ ≤ +  (22) 

Then, the following inequality holds: 

 ( , ) ( ).hI x u J x≤  (23) 

Therefore, k(x, t)  0 for any (x, t) in set M that is a neighbor-
hood of (x0, t0).This implies that there exists a neighborhood 
M of LgB(x)  0 such that k(x, t)  0 for all (x, t)  M.  Accord-
ingly, k(x, t) is continuous on the set ሼx | LgB(x) = 0}.  There-
fore, k: n ×  → m is a continuous mapping, and there ex-
ists a local solution of differential equation (1) with (17). 

Consider (1) and (17).  If I ≤ J , the following inequality 
holds: 

 ( ) ( ) ( ) ( , ) ( ) ( ) C.f g h hL B x L B x u t I x u J x KB x+ = ≤ = +  (24) 

On the other case that I > J, the following inequality holds: 𝐿௙𝐵ሺ𝑥ሻ + 𝐿௚𝐵ሺ𝑥ሻ𝑢௛ሺ𝑡ሻ − ሺ𝐼 − 𝐽ሻ = 𝐽 = 𝐾𝐵 + 𝐶. ሺ25ሻ 
Hence by (24) and (25),  the following inequality holds for all 
(x, t)  X × : 

 .B KB C≤ +  (26) 
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According to Gronwall's inequality (Cannarsa, 2004), the fol-
lowing inequality holds: 

 ( ) (0) .Kt KtC CB t B e e
K K

≤ + −  (27) 

Therefore for any t > 0, B(x(t))  .  This implies x(t)  X ow-
ing to (B2). 

''<'' in (16) in the definition of a CBF cannot be replaced by 
"≤" for the continuity of a human assist input (17), that is, (17) 
may be discontinuous at I = J in the case of  "≤." 

III. PROBLEM STATEMENT 
In this paper, we consider system (1) as a control system.  

Moreover, we divide the domain of x into two subsets: a safe 
set X  n , and an unsafe set Xu  n\X  n .  If x  X , the 
system is said to be safe.  Otherwise if x  Xu, the system is 
said to be unsafe.  We suppose that 𝑋 is diffeomorphic to n, 
and a diffeomorphism ϕ: n → X is given. 

The objective of the paper is to design the CBF on X. 

IV. INVARIANCE OF CONTROL BARRIER 
FUNCTION 

We here propose our design strategy of a CBF on X.  We 
show that B(ϕ-1(x)) is the CBF on X, and that a property of the 
CBF is invariant when the revived transformation (ϕ, ψ)  is 
given for system (1).  In addition, we show the CLF, as a prop-
erty of a CBF, becomes the CBF itself. 
 
Proposition 1 We consider (3) and a CBF B(ξ).  We assume 
the revived transformation (ϕ, ψ) is given.  Then, B(ϕ(x)) on X 
is a CBF for (1) that satisfies conditions (B1), (B2), (B3) in 
Definition 4. 

 
Proof.  We consider (1) and B(ξ) on n.  Note that X is dif-
feomorphic to n, and x = ϕ((t)) ∈ X  holds.  Thus, B(ϕ(x)) 
satisfies the conditions (B1) and (B2) in Definition 4. 

 
Moreover, owing to the property of the revived transformation 
(ϕ, ψ) , (1) is transformed to (3).  Bሶ ()  holds the following 
equation: 

 

( )

{ }
1

( ( )) ( ( ))( ( )) .h

BB

B f g v v t

ξ ξ
ξ

φ φ ξ φ ξ
ξ ξ

−

∂= ⋅
∂

  ∂ ∂= + +  ∂ ∂   



 (28) 

Then, the following inequality holds by condition (B3) in Def-
inition 4: 

 ( ) ( ) .B KB Cξ ξ< +  (29) 

Hence, the following equation holds: 

 

1
1

1

( ( ))

.

BB x x

B

B

φφ
ξ ξ

φ φ ξ
ξ ξ ξ

ξ
ξ

−
−

−

 ∂ ∂= ⋅ ∂ ∂ 

   ∂ ∂ ∂= ⋅ ⋅ ⋅   ∂ ∂ ∂   
∂= ⋅
∂

 





 (30) 

According to (28) and (29), the following inequality holds: 

 1 1( ( )) ( ( )) .B x KB x Cφ φ− −< +  (31) 

Therefore, B(ϕ(x)) is a CBF that satisfies conditions (B1), (B2), 
and (B3) in Definition 4. 

 
Note that in the virtual space, the state constraint appears to 
have disappeared.  This fact reveals the following corollary of 
Proposition 1: 

 
Corollary 1 We consider (3) and a CLF V(ξ).  Then, V(-1(x)) 
is a CBF. 

 
Proof.  According to Definitions 2 and 4, conditions (A1) and 
(A2) are the same as (B1) and (B2).  Moreover, the following 
inequality holds for all K, C > 0: 

 inf 0 ( ) .
mv

V KV Cξ ξ
ξ∈

∂ < < +
∂

  (32) 

The rest of the proof is the same as for Proposition 1. 
 
According to the same discussion as that given for Corol-

lary 1, we can show that a function with weaker requirements 
than those for the CLF defined by Definition 2 becomes a 
CBF: 

 
Corollary 2 We consider that (3) and V'() satisfy the condi-
tions (A1) and (A2) and the following condition (A3’). 

(A3’) The following inequality holds: 

 
inf ( , ( ), )

inf ( ) ( )( ( )) 0,

m

m

hv

f g hv

V v t v

L V L V v v t

ξ

ξ ξ
∈

∈

′

′ ′ = + + ≤ 






 (33) 

Then, V'(-1(x)) is a CBF. 
 

Proof. According to Definitions 2 and 4, conditions (A1) and 
(A2) are the same as (B1) and (B2).  Moreover, the following 
inequality holds for all K, C > 0: 

 inf 0 ( ) .
mv

V KV Cξ ξ
ξ∈

′∂ ≤ < +
∂

  (34) 
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Fig. 1. Control system: example 

 
 
Remark 1 Ames et al. did not discuss the need for proper 
functions concerning their reciprocal CBF (Ames et al., 2017).  
If the CBF is not proper, the invariance of the CBF by coordi-
nates transformation will not generally hold. 

V. EXAMPLE 
In this section, we design a CBF using the proposed method, 

and we present a safety assist 𝑢  using the designed 
CBF B(-1(x)). 

Firstly, we show that the invariance of the CBF by coordi-
nate transformation does not hold when using a reciprocal CBF. 

Secondly, we demonstrate the effectiveness of the proposed 
method using the proper CBF property. 

We consider one-dimensional motion with acceleration in-
put and walls, as illustrated in Fig. 1.  The system can be mod-
eled by the following equation: 

 1 2

2 ( ) ,h

x x
x u t u

=
= +




 (35) 

where x1, x2  X   denotes a state, and 𝑢 is an acceleration 
input.  Suppose that the two walls are placed at −l and l, where 
l is a positive constant and the environment X = {x | 
x1  (l, l), x2  }. 

For system (35), we design the following diffeomorphism 
ϕ: 

 

1
1

1 1
2

2 2 2

1

2 tan
2

( ) .

1
2

l
l

x
x

l

π ξ
π

φ
φ ξ ξ

φ
π ξ

−  
  

       = = =        
  +     

 (36) 

Moreover, the mapping ϕ-1: X → Ξ is obtained as follows: 

 

1
1

11 1
1 2

22
2

1

2 tan
2

( )
( ) .

( )
cos

2

l x
l

x
x x

x
x

l

π
πξφφ

ξφ
π

−
−

−

  
  

     
= = =     

          

 (37) 

We consider the system (35) and mapping (36).  Then, the fol-
lowing ψ: (ξ, v vh) α (u, uh) is an input transformation: 

2 2
1 2

22
2 11

2

( , , )

1 ( ).
12 1 22

h h

h

v v u u

v v

l ll

π ξ ξ

ξξ

ψ ξ

ππ

= +

= + +
   +  +     

  
 
  

 (38) 

Note that the control system (35) on the virtual space is ob-
tained as follows by revived transformation (ϕ, ψ): 

 1 2

2 ( ) .hv t v

ξ ξ
ξ

=

= +



  (39) 

1. Reciprocal CBF by Ames et al. 
We consider a reciprocal CBF by Ames et al. on 2 as follows: 

 ( ) 0,B ξ =  (40) 

According to (37), we can obtain a function B(-1()) on X as 
follows: 

 1( ( )) 0.B xφ − =  (41) 

Then, we can permit that (41) does not satisfy the definition of 
a reciprocal CBF on X. 

2. The CBF by Nakamura et al. and human assist control 
We consider a CBF on 2 as follows: 

 2 2
1 2( ) .B ξ ξ ξ= +  (42) 

The following proposition holds for (42): 
 

Proposition 2 (42) satisfies the conditions (B1), (B2) and (B3) 
in Definition 4. 

 
Proof. Firstly, we prove that (42) satisfies the condition (B1).  
Further, (42) holds the following equation:  

 2 2
1 2( ) 0,B ξ ξ ξ= + >  (43) 

where (42) is a non-negative function.  Thus, (42) satisfies the 
condition (B1).  Then, we prove that (42) satisfies the condi-
tion (B2).  For ξ  n, we consider the following inequality: 

 2 2
1 2 .Lξ ξ+ ≤  (44) 

Then, (42) is obviously bounded.  Moreover, we consider the 
following set Y: 

 2 2
1 2{ },Y Lξ ξ ξ= + ≤  (45) 

when the complementary set cY  is : 

 2 2
1 2{ | }.cY Lξ ξ ξ= + >  (46) 

0-l l

x2

x1
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Fig. 2. Designed CBF 𝑩൫𝝓ି𝟏ሺ𝒙ሻ൯ 

 
 
Here, cY   is clearly an open set.  Thus, (45) is a closed set.  
Therefore, (42) satisfies the condition (B2). 

Finally, we prove that (42) satisfies the condition (B3).  The 
time derivative of the CBF is calculated as follows: 

 ( ) ( ) ( ).f g h
BB L B L B u u

t
ξ ξ ξ

ξ
∂ ∂= = + ⋅ +
∂ ∂

  (47) 

If / , 0h f gu u L B L B B= − − = .  Thus, 

 0 .B KB C= < +  (48) 

Therefore, (42) satisfies the condition (B3). 
 
According to (37), we can obtain the CBF B(-1(x)) on X as 

follows: 

 

2

2
1 2

1
2

1

2( ( )) tan .
2 cos

2

xlB x x
l x

l

πφ
ππ

−

 
     = +              

 (49) 

(49) is illustrated in Fig. 2.  According to Proposition 1, (49) is 
a CBF that satisfies the conditions (B1), (B2), and (B3) in Def-
inition 4.  From the above, it is important to consider the prop-
erty of the condition (B2) in the proposed method. 

Hence, a safety assist control 𝑢 was designed by using (49) 
as follows: 

 
( )

( ) ( )2

( , )

0
( , ) ( ) ,( )

( )

Th
g

g

u k x t

I J
I x u J x L B x I J

L B x

=

 ≤
 −= − >



 (50) 

where 

 
Fig. 3 State by the proposed method (K = 1.0, C = 10.)) 

 
 

 
Fig. 4. Input by the proposed method (K = 1.0, C = 1.0) 
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π

 
    = ⋅ ⋅ +       

        

+ ⋅
 
 
 

 (51) 

 

2

2
2

1
2

1

2 tan .
2 cos

2

xlJ K x C
l x

l

π
ππ

  
       = + +                 

 (52) 

3. Computer simulation 
In this subsection, we evaluate the effectiveness of the pro-

posed controller (50) with computer simulation. 
We set l = 1, an initial condition x0  ሾ0, 0ሿT, K  1.0, and C 

= 1.0.  Moreover, we set uh  1.0 in the case of t < 10 [s] and 
uh1.0 in the case of t > 10 [s]. 

Figure 3 shows the time response of the state variables, and 
Fig. 4 shows the time histories of the inputs. 
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Fig. 5. Simple CBF 𝑩ሺ𝒙ሻ 

 
 
From Fig. 3, we can confirm that 1 < x1 < 1 is always sat-

isfied, and that the state stays in the safe set X  (1, 1).  From 
Fig. 4, we can confirm that u = 0 at t  0, u < 0 when x1 is ap-
proaching x1  1 , and u > 0  when x1  is approaching x1  1 .  
Thus, we can confirm the effectiveness of the proposed CBF 
design method using the revived transformation. 

VI. COMPARISON 
In Nakamura et al. (2019), the CBF was designed as a sim-

ple function, by setting the value of the function toward infin-
ity at the boundary of the state constraint.  However, sudden 
assistance was observed, and the parameters K and C in Theo-
rem 2 needed to be appropriately chosen. 

In this section, we describe our design of a human assist con-
trol using the simple CBF.  Moreover, we compare this simple 
CBF with the one we designed using the proposed method de-
scribed in the preceding section with computer simulations.  

We consider a simple CBF as follows: 

 2 2
1 2

1 1

1 1( ) .B x x x
l x l x

= + + +
− +

 (53) 

(41) is illustrated in Fig. 5.  Then, the safety assist control 𝑢 is 
designed as follows: 

 
( )

( ) ( )2

( , )

0
( , ) ( ) ,( )

( )

Th
g

g

u k x t

I J
I x u J x L B x I J

L B x

=

 ≤
 −= − >



 (54) 

 2 2
1 2 22 2

1 1

2 2 ,
( ) ( ) h

x xI x x x u
x l l x

= − + + + ⋅
+ −

 (55) 

 2 2
1 2

1 1

1 1 .J K x x C
x l l x

 
= + + + + + − 

 (56) 

 
Fig. 6. State by the simple CBF (K = 1.0, C = 1.0) 

 
 

 
Fig. 7. Input by the simple CBF (K = 1.0, C = 1.0) 

 
 

1. Computer simulation 1 
We show two patterns of computer simulation results using 

the controllers (50) and (54).  We carried out simulations using 
the Runge-Kutta law with a time step of 0.1. 

In this subsection, we use the same conditions as those de-
scribed in the previous section.  Figure 6 shows the time re-
sponse of the state variables, and Figure 7 shows the time his-
tories of the inputs. 

Comparing Fig. 3 with Fig. 6, we find that 1 < x1 < 1 is al-
ways satisfied, and the state stays in the safe set X  (1, 1).  

However, from Fig. 6, we can confirm that x1 does not ap-
proach the constraint in comparison with Fig. 3, and x2 is os-
cillating.  Comparing Fig. 4 with Fig. 7, the assist input u is 
sharp in Fig. 7.  However, we can confirm that the assist input 
u is moderate without tuning the parameters K and C in Fig. 4.  

Moreover, the assist input u is approximately −1.5 around 2 
[s], and approximately 3.2 around 12 [s] in Fig. 4.  By contrast, 
the assist input u is approximately −3.4 around 2 [s], and ap-
proximately 10 around 12 [s] in Fig. 7.  As a result, we can con-
firm that the proposed method guarantees safety with a smaller 
assist.  The reason is that the proposed method CBF (49) can 
design the CBF by considering the velocity x2, unlike the simple 
CBF (53).  We can also confirm te fact from Figs. 2 and 5. 
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Fig. 8. State by the proposed method (K = 5.0, C = 1.0) 

 
 

 
Fig. 9. Input by the proposed method (K = 5.0, C = 1.0) 

 

2. Computer simulation 2 
We here describe another computer simulation.  We selected 

K = 5.0 and C = 1.0.  The other conditions for this computer 
simulation were the same as those in the preceding subsection. 

Figures 8 and 9 depict the simulation results with the pro-
posed method.  Figures 10 and 11 show the simulation results 
for the simple CBF (41). 

From Fig. 8, we can confirm that 1 < x1 < 1 is always sat-
isfied.  In Fig. 9, we find that the assist input is larger than Fig. 
4.  However, in Fig. 6, the state constraint 1 < x1 < 1 is not 
satisfied.  As a result, the conventional, simple CBF may not 
guarantee the state constraint, even at the simulation level.  
Thus, the proposed method is effective as a design method for 
CBFs. 

VII. CONCLUSION 
In this study, we proposed a method of designing a CBF by 

using a revived transformation.  The conditions of the CBF are 
preserved in constrained space when the proper function that 
satisfies the condition of the CBF undergoes a diffeomorphic 
coordinate transformation.  We demonstrated that the CBF 
could be designed when the revived transformation is known.   

 
Fig. 10.   State by the simple CBF (K = 5.0, C = 1.0) 

 
 

 
Fig. 11.  Input by the simple (K = 5.0, C = 1.0) 

 
 

Moreover, the effectiveness of the proposed method was con-
firmed with an example.  Finally, we conducted a comprehen-
sive comparison of the proposed method with a simple CBF. 
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