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ABSTRACT 

This paper presents a new learning control structure using 
broad learning system (BLS) for adaptive PID-like control of 
unknown digital nonlinear dynamic systems with time delays. 
The proposed control method, abbreviated as BLS-APIDLC, 
is novel in combining BLS and model predictive control to   
develop a new PID-like control law for high-performance set-
point tracking control and disturbance rejection. Comparative 
simulations on two renowned nonlinear digital time-delay sys-
tems are well used to show the effectiveness and superiority of 
the proposed method by comparing to four   existing methods. 

INTRODUCTION 

In the past decades, conventional proportional-integral-
derivative (PID) controllers have gained widespread use in 
numerous control applications due to its simplicity of de-
sign and efficiency in the industrial applications (Astrom 
and Hagglund, 1995; Silva et al., 2005; O’Dwyer, 2009; 
Vilanova and Visioli, 2012).  Although the PID controller 
has only three parameters to be tuned, it is surprisingly 
difficult to find the right tuning for them without system-
atic procedures.  As such, the tuning of the PID gains is 
always a challenge in the state of the art of PID controller 
design.  In other words, the main problem with a PID con-
troller is the fact that the parameters of the PID controller 
must be adjusted properly to meet desired performance.  
This problem becomes more important when considering 

issues that  include stability and control performance.  Re-
cently, the area of adaptive PID control and its related control 
approaches have still been developed by researchers (Oliveira 
and Lemos, 2000; Pan et al., 2007; Fahmy et al., 2014; Yang 
et al., 2015).  Adaptive PID controller designs with controller 
parameters updated online by the neural network models were 
also presented.  Pan et al. (2007) developed a two-layer super-
vised control method for tuning PID controller parameters 
based on model parameters estimated by the lazy learning 
technique. Fahmy et al. (2014) proposed an adaptive PID con-
troller using the recursive least square algorithm which up-
dates the PID gains automatically online to force the actual 
system to behave like a desired reference model.  Oliveira and 
Lemos (2000) proposed a comparison of some fuzzy-model-
based adaptive-predictive control strategies.  Yang et al. (2015) 
presented an adaptive predictive control strategy based on La-
guerre functions in the chopper cascade control system, and 
examined by experiments. 

More recently, machine learning algorithms have made 
significant progress, especially deep learning technologies that 
have been made in wide areas (Tsai et al., 2014; Rosa and Yu, 
2016; Ghazia et al., 2017; Andò et al., 2018; Y. Kang et al., 
2019).  By successively adjusting the weights between neu-
rons over many input-output pairs, the function computed by 
the network is refined over time so that it provides more accu-
rate predictions.  The lately presented broad learning system 
(BLS) is an emerging way for efficient and effective modeling 
of complex systems (Chen and Liu, 2018; Jin and Chen, 2018; 
Chen et al., 2019).  Chen and Liu (2018) developed a very fast 
and efficient BLS based on the random vector functional-link 
neural networks (RVFLNN) (Pao et al., 1994) to offer an 
alternative way for deep learning and structure.  The de-
signed model can be expanded in wide fashion when new 
feature nodes and enhancement nodes are needed.  More-
over, the corresponding incremental learning algorithm is 
also designed.  The BLS offers an alternative to deep learn-
ing because it has a fast and broad expansion without the 
need for retraining through incremental learning.  The in-
put signals are passed to the mapped feature layer and then 
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passed to the enhancement layer via a nonlinear transfor-
mation.  Although NNs possess good function approximation 
capabilities for nonlinear dynamic systems, the training pro-
cess is time-consuming.  On the other hand, the BLS system 
has been shown to preserve good function approximation ca-
pabilities and has been illustrated the feasibility and benefits 
of BLS-based control techniques for identification and control 
of nonlinear dynamic systems (Chen and Liu, 2018; Jin and 
Chen, 2018; Vong et al., 2020; Xu et al., 2018; and Feng and 
Chen, 2018a; Chen et al., 2019).  

Conventional PID controllers have been regarded as the 
simplest and the most deployed controller in industry.  To 
extend the robustness and adaptability of the conventional 
PID controller, by integrating the simplicity and effective-
ness of the conventional PID controller and the learning and 
automatic adjustment capabilities of the intelligent control 
strategy based on the PID-like controller for the nonlinear 
dynamic system have been proposed (Wang et al., 1997; Tsai 
et al., 2005; Cong and Liang, 2009; Fu and Chai, 2011).  For 
example, Wang et al. (1997) presented an adaptive PID-like 
controller using a Modified Neural Network (MNN) for 
learning the characteristics of a dynamic system.  Tsai et al. 
(2005) proposed an adaptive PID-Like fuzzy-neural con-
troller and applied to the nonlinear model reference control 
system.  Fu and Chai (2011) presented a robust self-tuning 
PID-like controller by combining a pole assignment self-
tuning PID controller with a filter.  Cong and Liang (2009) 
proposed a PID-like neural network nonlinear adaptive 
controller for motion control systems by using a mix lo-
cally recurrent neural network.  The gradient descent method 
is used for online adjustment and the initial PID parameters 
are needed which can operate the closed-loop stably.  Kumar 
et al. (2014) proposed a hybrid neural network-based PID 
like adaptive controller for precise position control of a per-
manent-magnet synchronous motor (PMSM) servo drive.  So 
far, many adaptive PID control for industrial applications 
have been proposed (Tung, 2012; Tsai et al., 2017; Tsai et al., 
2019).  Feng and Chen (2018b) presented a PID-like control 
method using BLS; however, this kind of PID-like control 
method was limited to a class of nonlinear dynamic systems 
without time-delays. 

Inspired by the above-mentioned surveys, the objective of 
this paper is to propose a BLS-based adaptive predictive PID-
like control, called BLS-APIDLC, of a class of unknown 
nonlinear discrete-time time-delay systems not only for 
disturbance rejection but also for precise tracking and 
guaranteed stability.  The presented contents of the paper are 
written in two principal contributions.  One is the theoretical 
derivation and proof of a more general adaptive PID-like 
control approach using BLS for unknown nonlinear time-delay 
dynamic systems by comparing to the result (Feng and Chen, 
2018b), and the other is comparative investigation of the 
proposed BLS-APIDLC in comparison with four existing 
adaptive PID control methods. 

  
Fig. 1.  Topological structure of the used BLS model. 

 
 
The rest of this paper is organized as follows.  The basic 

ideas of the BLS and BLS identifier design are described in 
Sections II and III, respectively.  Section IV is devoted to 
proposing a BLS-APIDLC control law, investigating its 
closed-loop stability and iterative control algorithm.  Section 
V uses computer simulations to explore the effectiveness and 
superiority of the proposed BLS-APIDLC method for two 
illustrious nonlinear time-delay systems.  Section VI is 
finished with the conclusions and future work of the paper. 

II. BROAD LEARNING SYSTEM (BLS) 

1. Introduction to BLS 

Fig. 1 illustrates the network structure of BLS, which is 
delineated as follows.  First, the raw data is mapped into 
mapped features.  Then, the mapped features are promoted as 
enhancement nodes with randomly generated weights.  Finally, 
all mapped features and enhancement nodes are connected to 
the system output nodes.  One defines the weight matrices 
connecting the outputs of mapped feature nodes and 
enhancement nodes to the system output nodes as 
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weight connecting the k-th feature node in the i-th mapping 
group to the output neuron, and jw  is the weight connecting 

the j-th enhancement node to the output node.  It is worth 
noting that all the weights and biases, i

fklw   and  i
fkb  , in the 

feature mapping layer can be specified either by a sparse auto-
encoder or by an iterative learning algorithm. 

2. System Identification and Control Using BLS 

This subsection is devoted to briefly describing how the 
BLSs can be used to achieve system identification and control.  
The basic idea in doing so is to find on-line learning algorithms 
to update the key parameters of used BLSs so as to minimize 
a kind of quadratic cost function, E(k).  A basic gradient-based 
technique can be easily used to minimize the cost function.  
This results in the following rule for the adaptation of model 
parameters: 

 ( 1) ( ) ( ) ( )k k E k k    W W W  (2) 

where 0   is the learning rate, and W(k) is the weight vector 
containing all model parameters at the time instant k, W(k) is 
the updating parameter vector, and ( ) / ( )E k k W   is the 
gradient of E(k) with respect to W(k).  It has been shown that 
such a learning procedure minimizes the global cost  function 
E(k) provided that the learning rate  is sufficiently small [5]. 

III. BLS INDENTIFIER 

This section is dedicated to delineate a BLS identifier which 
is used to learn the input-output relationship of the nonlinear 
discrete-time time-delay system.  Fig. 2 illustrates the 
conceptual block diagram of the BLS identifier.  To explain how 
the BLS identifier works, let us describe the digital plant model 
with time-delay d  by using the subsequent delayed form. 

 
     
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where the plant input as 1( ) : mu Z    , the plant output as 
1( ) : my Z   , 1 1( ) : y un n df        be a nonlinear function, 

yn Z   , un Z   , d Z    represents the known time-delay 
of the system. Moreover, the incremental plant model with the 
time-delay d   can be rewritten by the following advanced 
form.  

     
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1. Updating Laws for the BLS Identifier 

In the subsection, we will propose an iterative learning 
algorithm for BLS to approximate the nonlinear system in (4).   

 
Fig. 2.  Conceptual diagram of the BLS identifier. 

 
 

Suppose there are n mapping groups with iK  feature nodes in 
the i-th group, and there are one group of m enhancement 
nodes.  One denotes the weight matrix connecting the outputs 
of feature nodes and enhancement nodes to the output node as 
in (4).  The input vector is denoted  by, lX , 1, ,l m  , and 
the BLS output vector ŷ  is given as 
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th feature node in the i-th mapping group, and ( )i
k x x   is a 

linear activation function, and ( ) tanh( )j x x   is a nonlinear 

activation function.  
The proposed iterative learning algorithms are based on the 

gradient descent method; the algorithms first find the gradients 
of all the updating parameters in the used BLS identifier as 
shown in Fig. 2, and then use the deepest descent approach to 
obtain the iterative parameter learning rules or algorithms.  In 
doing so, to obtain the learning algorithms for the six types of 

parameters, 
kl

i
fw  ,

k

i
fb  , i

jkw  , jb  , i
kw   and jw  , of the BLS 

identifier in (5), one defines the error function E(k) for the BLS 
identifier by 

 2 21 1
ˆ( ) ( ( ) ( )) ( )

2 2I IE k y k y k e k    (6) 

where ˆ( )y k  denotes the output of the BLS identifier. By 

utilizing the deepest gradient descent algorithm, one obtains 
the learning law for the parameter vector IW  via (2). 
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where 
I

  is the real and positive learning rate for the identifier, 
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2. Updating Laws for the BLS Identifier 

The following theorem will show that the proposed 
algorithm is asymptotically convergent via the discrete-time 
Lyapunov stability theory.  

 
Theorem 1: The BLS identifier (5) with parameter learning rule 
(7) and persistently exciting inputs is asymptotically convergent 
provided that ( )I k  satisfies the following condition 
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Proof: To obtain the sufficient condition of the asymptotical 
convergence of the proposed BLS identifier with and 
persistently exciting inputs, let us define the Lyapunov 
function as  
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Thus, from (10) and (11), it follows that   
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Obviously, ( ) 0IL k   is negative definite if and only if the 

sufficient condition (8) holds. This completes the proof. 
 

Theorem 2: The best asymptotical stability rate * ( )I k  for the 

BLS identifier is given by 
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Proof: The best learning rate * ( )I k   can be found by 

considering at the time when 
2
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  occurs. 

Therefore, it follows that  
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Hence, the best convergent rate in (14) can be easily  
obtained  from (15) by solving *( ) / 0I Id L k d  . 

 
Remark 1: In applying Theorem 1, it is required that the 
learning rate must be checked at every sampling time instant, 
in order to guarantee that the inequality (8) holds.  Obviously, 
the least upper bound, ˆmax ( ) ( )Iy k k W , is small when the 

learning phase just gets started, but the bound will be getting 
small and even becomes zero when  the learning phase is 
achieved. Hence, it is practically safe to choose a small initial 
learning rate of ( )I k  , in order to ensure the uniform 

asymptotical convergence of the training BLS. 

IV. BLS-BASED ADAPTIVE PID-LIKE 
CONTROLLER (BLS-APIDLC) DESIGN  

This section presents a BLS-APIDLC method for a class of 
nonlinear discrete-time dynamic systems with time delays.  
The proposed controller is strictly derived and examined by 
integrating the previous BLS identifier with online learning 
and identification.  A cost function of the BLS-PIDLC is also 
proposed, and the proposed controller can cope with 
parametric variation and uncertainty in the controlled plant 
through on-line learning.  The controller’s learning algorithm 
is considerably faster through the introduction of a BLS  
algorithm.  Fig. 3 shows the detailed description of the BLS-
APIDLC system using two BLS identifiers and one BLS-
PIDLC for unknown nonlinear dynamic system models. In Fig. 
3, both BLS identifiers have the same parameters, namely that 
all the parameters of the BLS identifier 2 directly copy from 
those of BLS identifier 1.  Notice that the output of BLS 
identifier 2 is ˆ( )y k d   which is calculated by using the 
advanced form of the system model (5). 
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Fig. 3.  Detailed block diagram of the BLS-APIDLC controller. 

 
 

1. Design of the Proposed BLS-PIDLC 

This subsection will propose iterative learning algorithms 
for the BLS-PIDLC in order to control the nonlinear dynamic 
system in (4).  The proposed iterative learning algorithms for 
the BLS-PIDLC are almost similar to those for the BLS 
identifier, but the output of the BLS-PIDLC is given by  
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The learning laws for the six kinds of parameters, 
kl

i
fw ,

k

i
fb ,

i
jkw  , jb  , i

kw   and jw  , of the BLS-PIDLC are derived to 

minimize the following predictive cost function  

  2 2ˆ( ) ( ) ( ) / 2 ( ) / 2c cE k d r k d y k d e k d        (17) 

where ( )r k d  and ˆ( )y k d   respectively denote the d-step-
ahead reference command and predictive output of the second 
BLS identifier.  From the previous gradient descent algorithms, 
we have 

 

( ) ( 1) ( ) 

ˆ( ) ( )
( )

( ) ( )

c c c

c c
c

k k k

y k d u k
e k d

u k k


   

  
 

 

W W W

W

 (18) 

where 
c

  is the real and positive learning rate for the BLS-

PIDLC, = [           ]C C C C C C T
C fi fi ef ef ye yeW W W  W and  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

T

C C C C C C
C fi fi ef ef ye ye

u k u k u k u k u k u k u k

k W k k W k k W k k  

       
  

        W
 

 
Remark 2: In (18), the Jacobian operation, ˆ( ) ( )y k d u k   , 

can be online computed from the second BLS identifier whose 
weighting parameters are directly transferred from the first 
BLS identifier.  Moreover, the computations regarding 

( ) ( )cu k k W  are easily done via (16). 

2. Asymptotical Stability of the Proposed BLS-PIDLC 

The following theorem will prove that the proposed BLS-
PIDLC control system is asymptotically stable. 

 
Theorem 3: Assume that the parameters of both identifiers are 
convergent and the weighting parameter vector cW  in (16) is 

trained along with the BLS-PIDLC law via (18).  Then the 
proposed BLS-PIDLC closed-loop system is shown uniformly 
asymptotically stable if the learning rate c   satisfies the  

following condition  

 22

2

2
0

ˆ( ) ( )
max

( ) ( )

c

k
c

y k d u k

u k k

 
    
      W

 (19) 

where 
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

 

W
 (20) 

Proof: To establish the sufficient condition of the uniformly 
asymptotical stability of the proposed BLS-PIDLC controller, 
we define the sequel Lyapunov function  

  2 2ˆ( ) ( ) ( ) ( )C cL k r k d y k d e k d       (21) 

Then, the time difference of the Lyapunov function is given by  
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 (22) 

where, from (18), we have  
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 (23) 
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and 
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

 
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 (24) 

Thus, from (22) and (23), it follows that   

 

2 2

2

2 2
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   W W

 (25) 

Obviously, ( ) 0CL k   is negative definite if and only if the 

sufficient condition (19) is satisfied.  This completes the proof. 
 

Theorem 4: The best learning rate * ( )c k  for the BLS-PIDLC 
controller satisfies the following condition 

 *
22
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( ) ( )
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y k d u k
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 
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 (26) 

Proof: Similar to Theorem 2, the best control learning rate 
* ( )c k   can be easily found from (27) by solving 

( ) / 0C cd L k d   in (22) at the time instant k where  
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    
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W

W

 (27) 

This completes the proof. 
 
Remark 2: In applying Theorem 3, it is required that the 
control learning rate, c ,must be checked at every sampling 

time instant, in order to guarantee that the inequality (19) holds.  
Obviously, the least upper bound, max ( ) ( )cu k k W  , is 

large when the learning phase just begins, but the bound will 
become small and even zero once the learning phase has been 
finished.  Hence, it is a safe way to select a small initial learning 
rate of c  to achieve the  uniform asymptotical stability of the 

proposed BLS-PIDLC closed-loop control system. 

3. Iterative BLS-APIDLC Algorithm 

In what follows, an iterative BLS-APIDLC control 
algorithm is proposed to on-line update not only the 

parameters of the BLS identifiers, but also the parameters of  
the proposed   predictive BLS-PIDLC controller, thus 
achieving desired  control iteratively.  The computations at 
each time instant k can be described as follows; 

 

Step 1. Determine d, nu and ny of the controlled plant, and 
select the structure of the used BLS identifier.  

Step 2. Determine the initial learning rates, I  and C , and 

randomly initialize six type of parameters of the BLS 
identifier and BLS-PIDLC.  

Step 3. Measure the plant output y(k) and read the reference 
setpoint r(k). 

Step 4. Compute the output u(k) of the BLS-PIDLC in (16). 
Step 5. Output  the control signal u(k) to the controlled plant 

in (4). 
Step 6. Update all the parameters of the BLS identifier using 

(7) and the best learning rate * ( )I k in (14). 

Step 7. Update all the parameters of the BLS-PIDLC 
parameters using (18) and the best learning rate 

* ( )c k  in (26). 

Step 8. Repeat Steps 3-7. 
 

The following theorem summarizes the main results regarding 
the overall BLS-APIDLC system. 

Theorem 5: Under the proposed iterative BLS-APIDLC 
algorithm, the overall BLS-APIDLC system is uniformly 
asymptotically stable if both sufficient conditions (8) and (19) 
hold. 

Proof: Theorem 5 can be easily proven by selecting the  
discrete-time Lyapunov function, ( )L k , as the sum of ( )IL k

and ( )CL k  , that is, ( ) ( ) ( )I CL k L k L k   , and showing that 

the time difference of ( )L k  is negative definite if both 

sufficient conditions (8) and (19) are satisfied. 

V. SIMULATIONS AND DISCUSSION 

In this section, two illustrative examples are given to 
explore the effectiveness and superiority of our proposed BLS-
APIDLC controller by controlling some nonlinear discrete-
time dynamic systems.  The topology of the proposed BLS is 
kept fixed in our simulations.  There are many different 
performance criterions that are used to evaluate the entire 
dynamic responses for controller design.  Our evaluation method 
concentrates on the following commonly used control criteria: 
maximum errors, RMSE, ISE, IAE and ITAE.  Performance 
comparisons are executed to indicate the advantageous 
capabilities of the proposed control method in comparison 
with four existing adaptive PID controllers: RBFNN-APPID 
(Tung, 2012), ORFWNN-APPID (Tsai et al., 2019), FWNN-
APPID (Tsai et al., 2017) and FBLS-APPID where the FBLS 
is described in (Feng and Chen, 2018). Note that, in BLS-
APPID, the BLS is employed to on-line tune the PID gains (Li, 
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2019). 

 
Fig. 4. Tracking responses and control signals corresponding to the large 

step disturbance with a peak amplitude of 0.1. 

 
 

 

Fig. 5. Time evolutions of the learning rates of *
Iη and *

c  for Example 

1. 
 
 

Example 1: Consider the following nonlinear discrete-time 
dynamic system, which is a modified version of the example 
(Tsai et al., 2017; Tsai et al., 2019):  

3 2( ) ( 1) 0.2 ( 1) ( ) 0.08 ( ) ( ) y k y k y k u k d u k d k         

where the time delay is set by 7d   and ( )k  denotes the 

exogenous disturbance.  The design parameters are specified 
as 1yn  , 7un  ,  0.1I  , c  is initially set as 0.5, and the 

sampling epoch S  1000.  In the example, the parameter 
settings of the used BLS is given as follows; the number of its 
inputs is selected as 3, the number of the mapping feature 
nodes is 4, the number of the mapping feature window is 1, 
and the number of the enhancement nodes is 4. 

After finishing the simulation, Fig. 4 depicts the tracking 
responses of the proposed controller for the case of the step 
disturbance with a peak amplitude of 0.1 after the 600-th 
sampling instant. The curves of the learning rates *

I  and *
c  

are plotted in Fig. 5.  Fig. 6 compares the output responses of  

 
Fig. 6.  Comparison of the output responses. 

 
 

 
Fig. 7.  Comparison of the tracking errors. 

 
 

the BLS-APIDLC, BFNN-PID, RFWNN-APPID, FWNN- 
APPID and FBLS-APPID under set-point varies and large 
external disturbances. 

Fig. 7 illustrates the tracking errors of the BLS-APIDLC, 
BFNN-PID, RFWNN-APPID, FWNN-APPID, FBLS-APPID 
and BLS-APIDLC.  In addition, the results in Table 1 indicate 
that the four performance indexes of the proposed BLS-
APIDLC controller are less than those of four existing 
controllers, thus indicating that the proposed controller 
exhibits better disturbance rejection and control performance 
in terms of maximum errors, RMSE, ISE and IAE.  The 
comparative results in Table 2 illustrate that the proposed BLS-
APIDLC with different initial rates of I  and c   has the 

almost robustness property of the proposed BLS-APIDLC in 
terms of maximum errors, RMSE, ISE and IAE. 

Example 2: Consider the following nonlinear discrete-time 
dynamic system, which is a modified version of the example 
(Tsai et al., 2017; Tsai et al., 2019): 
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Table 1. Comparison of performance indexes of the 
comparatuve controllers 

Controller 
Max. 
Error 

RMSE ISE IAE 

RBFNN-PID 
(Tung, 2012) 

0.3015 0.0442 1.9498 14.5264 

ORFWNN-APPID 
 (Tsai et al., 2019) 

0.3010 0.0442 1.9580 14.6306 

FWNN-APPID 
(Tsai et al., 2017) 

0.3026 0.0443 1.9616 14.6509 

FBLS-APPID 
(Feng and Chen, 2018) 

0.3010 0.0442 1.9578 14.6338 

BLS-APIDLC 0.3001 0.0419 1.7534 11.3588 

 
 
Table 2. Comparison of performance indexes of different 

initial learning rates for BLS-PIDLC in Example 
1. 

( ,I c  ) 
Max. 
Error 

RMSE ISE IAE 

(0.25,0.25) 0.3011 0.0420 1.7643 11.4199 
(0.5,0.5) 0.301 0.0419 1.7536 11.4485 

(1,1) 0.3014 0.0419 1.7568 11.4483 
(0.1,0.5) 0.3001 0.0419 1.7534 11.3588 
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where the time delay is set by d  3. The design parameters are 
specified as ny  2, nu  3, 0.1I  , c  is initially set as 0.6, 

and the sampling epoch is 1000.  Note that the used controller 
works as a P-like controller such that the number of the input 
number is 1, the number of the mapping feature nodes is 4, the 
number of the mapping feature window is 1, and the number 
of the enhancement nodes is 10.  The control purposes are not 
only  to let  the output of  the BLS  approximate the system 
output y(k) as closely as possible, but also to control the system 
output to track the subsequent reference r(k) and reject external 
disturbances v(k) 

0  ,           0<k 250
1  ,    0<k 500

( )   ,  ( ) 0.05  ,  250<k 750
0 ,    500<k 1000

0.1  ,    750<k 1000

r k v k


      

 

Fig. 8 illustrates the tracking responses and control signals 

of the proposed method. The curves of the learning rates *
I   

 

Fig. 8.  Tracking responses and control signals in Example 2. 

 
 

 
Fig. 9. Time evolutions of the learning rates of 

*
Iη and 

*
c  for Example 

2. 

 
 

 
Fig. 10.  Comparative output responses of the five controllers. 

 

 

and *
c  are given in Fig. 9.  Fig. 10 shows the comparison 

results of the output responses for the proposed BLS-APIDLC 
controller and the four existing controllers under set-point 
changes and disturbances.  Fig. 11 demonstrates the tracking  
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Table 3. Comparison of performance indexes of the 
comparatuve controllers 

Controller 
Max. 
Error 

RMSE ISE IAE ITAE 

RBFNN-PID 
(Tung, 2012) 

1.2793 0.1344 18.0695 38.4014 18242 

ORFWNN-APPID 
(Tsai et al., 2019) 

1.0029 0.1185 14.0375 34.6003 14676 

FWNN-APPID 
(Tsai et al., 2017) 

1.0030 0.1171 13.7115 33.4541 13870 

FBLS-APPID 
(Feng and Chen, 2018) 

1.0024 0.1180 13.9252 33.2663 14878 

BLS-APIDLC 1 0.1102 12.1415 27.7630 11718 

 
 

Table 4. Comparison of performance indexes of different 
initial learning rates for BLS-PIDLC in Example 
2. 

( ,I c  ) 
Max. 
Error 

RMSE ISE IAE ITAE 

(0.25,0.25) 1.0013 0.1104 12.1808 28.4248 12242 

(0.5,0.5) 1.0130 0.1120 12.5526 29.4484 12368 

(1,1) 1.0040 0.1150 13.2194 30.1088 12169 

(0.1,0.6) 1 0.1102 12.1415 27.7630 11718 

 

 

 
Fig. 11.  Comparative tracking errors of the five controllers. 

 
 
errors of these five controllers. The comparative results in 
Table 3 reveal that the proposed BLS-APIDLC outperforms 
the four controllers in terms of maximum errors, RMSE, 
ISE, IAE and ITAE.  The results in Table 4 show that the 
proposed BLS-APIDLC with different initial rates of I
and c   exhibits the almost robustness property of the 

proposed BLS-APIDLC in terms of maximum errors, 
RMSE, ISE, IAE and ITAE. 

V. CONCLUSIONS 

This paper has proposed an adaptive PID-like controller 
(PIDLC) using broad learning system (BLS) for unknown 
nonlinear discrete-time dynamic systems with time delays.  
This special controller, abbreviated BLS-APIDLC, makes the 
BLS network able to work as a PID controller as needed.  The 
BLS is employed to successfully learn the incremental 
characteristics of the digital nonlinear dynamic systems and 
the BLS-PIDLC is effectively designed for setpoint tracking 
disturbance rejection of such unknown nonlinear dynamic 
systems.  In the outset, two sets of iterative gradient descent 
learning algorithms for the BLS-APIDLC method have been 
established, and its overall closed-loop asymptotical stability 
has also been investigated to find two sufficient conditions 
regarding the learning rates.  The effectiveness and superiority 
of the proposed adaptive BLS-APIDLC method have been 
well exemplified by conducting two simulations on widely 
known digital nonlinear time-delay dynamic systems.  An 
interesting future work would be to propose a BLS-APIDLC 
control method for unknown nonlinear multi-input-multi-output 
(MIMO) discrete-time  dynamic systems. 
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