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ABSTRACT 

This paper addresses a control performance problem for dis-
cretized ship autopilot system with uncertainty.  To completely 
express the uncertainty, Linear Parameter Varying (LPV) mod-
elling technology is employed such that the ship autopilot sys-
tem is described via several linear systems and weighting func-
tion.  Furthermore, gain-scheduled scheme is applied to design 
a controller to achieve the passivity and pole-assignment con-
straints.  Moreover, a Parameter-Dependent Lyapunov Func-
tion (PDLF) is used to derive some sufficient conditions.  
Through the proposed design method, the attenuation perfor-
mance and stability of the system can be guaranteed.  Besides, 
the transient responses are furtherly improved such that the 
ship autopilot system possesses short settling time for abomi-
nable operation.  To demonstrate the proposed design method, 
some numerical simulations are finally provided.  

I. INTRODUCTION 

Lim and Forsythe have firstly proposed a mathematical 
model to describe the dynamics of ship autopilot systems.  
Through the model (Lim and Forsythe, 1983), many works 
(Song et al., 2005; Zhang and Ren, 2005) have been done for 
their own controller design method.  Unfortunately, only few 
results were efforted to investigate the robust issue of ship au-
topilot systems.  It is well known that the modelling error and 
time-varying parameter named as uncertainty cause instability 
and poor performance.  Generally, the uncertainty is appeared 
during some transformation procedures, such as discretization 
and linearization.  Therefore, variant robust control problems 
(Belov and Andrianova, 2019; Esfahani and Pieper, 2019; Lee 

and Lee, 1999) have been received much attention for uncer-
tain systems.  According to the maturity of electronic elements, 
the practical stabilization problems are usually regarded as the 
discrete control problems.  Referring to (Song et al., 2005), the 
ship autopilot system was thus directly discretized from con-
tinuous-time dynamics.  However, the discretization often 
causes a strong uncertainty.  To express the uncertainty, many 
literature (Belov and Andrianova, 2019) utilize a bounded 
norm with some regular functions such as sine or cosine func-
tion.  To avoid the limitation of bounded norm, the Linear Pa-
rameter Varying (LPV) system (Daafouz and Bernussou, 2001; 
Prempain et al., 2002; Lee, 2006; Qin and Wang, 2007; Caignu 
et al., 2010; White et al., 2013; Zhang et al., 2015) was pro-
vided to complete description for the complex uncertainties.  

Referring to the literature (Zhang et al., 2015), the extreme 
values of carrying region are used to model several linear sys-
tems and weighting function to establish a LPV model for 
time-varying systems.  Due to the weighting function, the 
time-varying property is characterized via scheduling the lin-
ear systems to simulate the uncertain systems.  Besides, a gain-
scheduled scheme (Caignu et al., 2010) was widely applied to 
amplify the significant advances of the LPV system for robust-
ness.  Through the LPV system and gain-scheduled scheme, 
the solutions in (Prempain et al., 2002; Wing and Wang, 2007; 
White et al., 2013) were proposed to analyze and synthesize 
the robust stability of practical systems.  For the stability issues, 
Lyapunov function is usually chosen to discuss the energy 
change of systems.  Referring to (Daafouz and Bernussou, 
2001; Ku and Chen, 2015), a Parameter-Dependent Lyapunov 
Function (PDLF) provides some relaxed results in discussing 
the stability analysis and controller synthesis.  Based on the 
PDLF, the state-feedback scheme is always adopted to estab-
lish a gain-scheduled controller for the required control perfor-
mance (Daafouz and Bernussou, 2001; Ku and Chen, 2015).  
According to the inertia of ship, the transient response of the 
autopilot system is required to improve the control perfor-
mance, furtherly.  For the transient response, pole-assignment 
constraint (Chilali and Gahinet, 1996; Chilali et al., 1996; 
Hernrion et al., 2003; Hong and Nam, 2003; Plalcios and Titli, 
2005) is thus provided to force the closed-loop poles into the 
assigned region.   
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Considering the pole-assignment constraint, a D-stability 
technology (Chilali and Gahinet, 1996; Chilali et al., 1996; 
Hernrion et al., 2003) was proposed to assign the region 
which determines the transient response of the closed-loop 
system. Moreover, the region can be assigned as sector, circle 
or plane cases for the different requirements.  Furthermore, a 
design method has been proposed to achieve multiple pole-
assignment constraints in (Plalcios and Titli, 2005).  Based 
on the results, the D-stability technology can be directly ap-
plied to constrain the closed-loop poles of the polynomial 
systems such as fuzzy system (Chang et al., 2018; Hong and 
Nam, 2003; Plalcios and Titli, 2005) and LPV system 
(Ramezanifar et al., 2012).  Nevertheless, the pole-assign-
ment constraint for polynomial systems is hardly achieved by 
satisfying several conditions at the same time.  Thus, a con-
troller design method to guarantee the closed-loop poles of 
polynomial system in the assigned region is an interesting is-
sue.  In addition to the pole-assignment constraint, the atten-
uation performance is also concerned to attenuate the effect 
of wave on the heading of ship autopilot system.  Referring to 
(Deng and Bu, 2012; Ku, 2016; Lozano et al., 2000; Xie et al., 
1998), the passivity theory possesses a general attenuation per-
formance including control scheme, positive real theory and 
several passive types via giving power supply function.  
Through the pole-assignment and passivity constraints, the 
transient and steady-state responses of ship autopilot system 
can be improved in the finite time.  

According to the above motivations, the robust asymptotical 
stability and stabilization issue of discretized ship autopilot 
system is investigated subject to the pole-assignment and pas-
sivity constraints in this paper.  Considering the modelling er-
rors caused by the discretization, the LPV system is employed 
to describe the ship autopilot system with uncertainties.  Based 
on the D-stability approach, the closed-loop poles are assigned 
to achieve excellent transient response.  For the attenuation 
performance, the passivity theory is applied to constrain the 
wave affecting operation of ship.  Using PDLF, some Linear 
Matrix Inequality (LMI) (Boyd et al., 1994) conditions are 
derived to guarantee the pole-assignment and passivity con-
straints under the robust asymptotical stability.  Via the sim-
ulation results, the ship autopilot system driven by the de-
signed controller is asymptotically stable subject to pole-as-
signment and passivity constraints.  

This paper is organized as follows: In Section II, the dis-
cretized ship autopilot system is described.  For the system, 
a gain-scheduled controller design method is proposed in 
Section III.  In Section IV, the simulations of the discretized 
ship autopilot system driven by the designed gain-scheduled 
controller are provided.  Some conclusions are stated in Sec-
tion V. 

II. SYSTEMS DESCRIPTION AND PROBLEM 
FORMULATION 

Referring to (Song et al., 2005), the following discretized  

 
Fig. 1 Coordinate of Ship Autopilot System 

 
 

equations for the ship motion can be obtained.  To consider the 
modelling error, the time constant T  is assumed as the time 
varying parameter regarding as uncertainty.  Moreover, the dis-
turbed term is added for the possible external disturbance. 

      1 1 21 0.4x k x k x k     (1a) 

        2 2 31 0 .4 0 .0 0 2x k x k x k v k     (1b) 

      
  
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0.4 8.540.04564
1 1
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T k
x k x k x k

T k T k

      
   

 

    
 

46.044 7.044

21.35

x k u k

T k





 (1c) 

         4 4 41 0.16x k x k x k u k     (1d) 

      1y k x k v k   (1e) 

where  1x k   represents the difference of heading angle and 

desired heading angle of ship,  2x k   represents the naviga-

tional angle velocity,  3x k  represents the navigational angle 

acceleration;  4x k  represents the actual rudder angle of ship; 

 u k   represents the steering angle, and  v k   is chosen as 

zero-mean white noise with unit variance.  The dynamics of (1) 
can be referred to Fig. 1.  For the possible value of  T k  in the 

system, the time-varying range is determined as follows: 

    3 6 .25 1 08 .75T k   (2) 

Using the LPV modelling approach (Zhang et al., 2015), the 
system (1) is described as follows: 
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      y k x k v k C D  (3b) 

 
1

1 0.4 0 0

0 1 0.4 0

0 0.000064 0.9508 0.000296

0 0 0 0.84

 
 
 
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 
 

A  

where 

 
2

1 0.4 0 0

0 1 0.4 0

0 0.00013 0.9438 0.00088
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1 2

0 0
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0.1363 0.1363
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   
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B B ,    

  0 0.0002 0 0
TT E ,  1 0 0 0C ,  
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D

, 

For simplifying the notation,  k    is used in the follow-

ing context. 
The following gain-scheduled controller is designed for (3). 

          
2 2

1 1
jj j j

j j

u k x k x k   
 

  
       

  
 F G F G  (4) 

Based on (4), the following closed-loop system is built. 
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
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X E
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X E

 (5) 

where  ij i i j j X A B F G . 
In this paper, the following definitions are applied for atten-

uation performance and pole-assignment constraint. 

Definition 1 (Lozano et al., 2000) 

The closed-loop system (5) is called passive if there exists 

the matrices 1S , 3S  and 2 0S  such that 

            1 2 3
0 0 0

2
p p pk k k

T T T

k k k

y k v k y k y k v k v k
  

   S S S  (6) 

where 0pk    # 

Definition 2 (Palacios and Titli, 2005) 

The region D   is defined as follows: 

   2 2 2:D x jy C x q y r       (7) 

If the poles of the closed-loop system (5) without external dis-
turbance lie in the circle C   , it includes the centered point 
 , 0q  and radius 1 0r   where 0 1q r   .       # 

According to (Palacios and Titli, 2005), the considered sys-
tem (5) subject to pole-assignment can be noted as follows: 

 
      

     
2 2

1 1

1

/i ii i j ij
i i i j

x k q r x k

q r x k



 
  

  

     
  
 

X I

X I X
 (8) 

In the following context, the system (8) is substituted for 
the original system (5) to design the gain-scheduled controller 
(4).  And then, the designed controller is applied to uncertain 
ship autopilot system (1) to demonstrate the applicability and 
usefulness of the proposed design method. 

Remark 1 

Generally, the pole assignment performance is fundamen-
tally related to i j   but i j   and to locate the poles of the 
dominant terms in the prescribed region.           # 

Besides, the following lemma is applied to analyze the  D-
stability of the non-disturbed system. 

Lemma 1 (Hong and Nam, 2003) 

If there exists a symmetric matrix P   satisfying the follow-
ing inequality, the system is asymptotically D -stable. 

     2 < 0
T

q q r  A I P A I P  (9) 

where q and r satisfy Definition 1.                  #. 

III. CONTROLLER DESIGN METHOD 

In this section, some sufficient conditions are derived for 
discussing the stability and attenuating performance of (8).  
Furthermore, the conditions are converted into LMI form for 
applying convex optimization algorithm. 

Theorem  
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Given scalars q and r satisfying 0 1q r    , and matrices 

1S , 2 0S  and 3S , if there exists the positive definite matrices 

iP , any matrices jG  and feedback gains jF  to satisfy the fol-

lowing condition, then the closed-loop system (8) is asymptot-
ically stable subject to pole-assignment and passivity con-
straints. 

  
   

1 3 1 1
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 (10b) 

where 1 1, , andT
i i i i ii i i i ij i j

    Q = P R = G U = Q R R M A R  

i jB F . 

Proof: 

Let us choose the following PDLF. 

         TV x k x k x k P  (11) 

Taking the difference of (11), the following equation can be 
directly inferred along the trajectories of (8). 
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Defining        
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1 l l
l
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  P P P , (12) can be thus 

rewritten as follows: 
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For all   0v k   and  0 0x   , we define the following cost 
function. 
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where 
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Applying Schur complement (Boyd et al., 1994) to (10), 
one can obtain the following inequalities. 
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and 
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Based on T T
i i i i i i   Q R R R PR  , the following inequalities 

can be obtained. 
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and 
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Pre- and post-multiplying (16) by  ,T
jdiag G I  and  ,jdiag G I , 

one has 
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 (17a) 

and 
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Obviously, the inequalities in (17) can be applied to ensure  
0iil Ψ  and 12 0l Ψ   if the conditions in (10) are held.  Since 

0iil Ψ  and 12 0l Ψ ,  , , 0x v k Γ   can also be inferred from 

(14) to guarantee the following inequality. 
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  S S S   (18) 

Based on (18), one can easily find that the closed-loop system 
achieves passivity performance defined by Definition 1.  Ad-
ditionally, assuming   0v k   , the following inequalities are 

obtained from (17). 
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Since 2 0S , the following inequalities are easily obtained. 

    2 0
T

ii l ii iq q r   X I P X I P  (20a) 

and 
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Based on Lemma 1 and (20a), if the condition (10a) holds then 
the closed-loop poles for each linear system in (8) can be 
forced into the D-region defined by Definition 2.  Furthermore, 

based on (12) and (20),    0V x k   can be found for guar-

anteeing the asymptotical stability of the closed-loop system 
in (8).  Thus, if the conditions in Theorem hold, the uncertain 
ship autopilot system is asymptotically stable subject to pole-
assignment and passivity constraints.  The proof is completed.
                               # 

It is obviously found that the conditions in (10) are LMI 
form which can be directly solved via convex optimization al-
gorithm (Boyd et al., 1994).  Based on the proposed design 
method, the simulation results of uncertain ship autopilot sys-
tem (1) are provided in the next section. 

IV. SIMULATION RESULTS 

Applying the convex optimization algorithm, the following 
feasible solutions can be obtained via solving Theorem with 
the given 0q  , 0.4r  , 1 0S , 2 S I  and 3  S I . 
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Fig. 2 Response of  1x k  

 
 

 

Fig. 3 Response of  2x k  
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Fig. 4 Response of  3x k  

 
 

 
Fig. 5 Response of  4x k  

 
 

According to the gains in (21), the following gain-scheduled 
controller (4) can be established. 
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With (22), the responses of (1) are stated in Figs.2-5 with 

   0 1 0.12 0
T

x   .  From Figs. 2-5, one can find that the 

states of system (1) are converged to zero via (22).  Besides,  
according to Fig. 6, the closed-loop poles are obviously lo-
cated at the circle region specified by    , 0,0.4q r  .  Since 

1 0S  , 2 S I   and 3  S I  , it means that a consideration of 

H  performance is a special case of passivity theory.  Thus, 

the following ratio value is got via substituting the simulation 
data and is obviously smaller than the given values. 

        
20 20

2 3
0 0

0.7942
p pk k

T Ty k y k v k v k
 

 S S  (23) 

The Proposed Method

120

100

80

60

×
1(

k)
 (
θ)

Time (sec),Δt (0.4sec)

20

0

0 5 10 15 20
-20

The Method of Caigny et al., 2010

The Proposed Method

-4

-5

-3

-2

-1

-0

1

2

×
2(

k)
 (
θ/

se
c)

Time (sec), Δt (0.4sec)

0 5 10 15 20

The Method of Caigny et al., 2010

The Proposed Method

-12

-10

-8

-6

-4

-2

0

2

4

×
3(

k)
 (
θ/

se
c2

)

Time (sec),Δt (0.4sec)

0 5 10 15 20

The Method of Caigny et al., 2010

The Proposed Method

-25

-20

-15

-10

-5

0

5

10

15

20
×

4(
k)

 (
θ)

Time (sec), Δt (0.4sec)

0 5 10 15 20

The Method of Caigny et al., 2010



 W.-J. Chang et al.: Robust Control of Ship Autopilot System Subject to Multiple Constraints 355 

 

 
Fig. 6 Location of Closed-Loop Poles 

 
 

According to (23), the passivity performance is obviously 
achieved via the controller (22).  Concluding the above results, 
the passivity performance and asymptotical D-stability of the 
proposed method can be verified.  

In order to show the advantage of this paper, the LPV-based 
control method (Caigny et al., 2010) is applied to the same 
system (1).  Applying the method (Caigny et al., 2010), the 
following feasible solutions can be obtained. 
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Based on the gains in (24), the responses of (1) driven by the 
designed controller are also shown in Figs. 2-5 with the same 

initial condition.  Referring to Figs. 2-5, the proposed design 
method provides a shorter settling time than the method of 
(Caigny et al., 2010). Referring to Fig. 6, the region of con-
straining the closed-loop poles assigned by the proposed de-
sign method is smaller region than one assigned by the method 
of (Caigny et al., 2010).  Moreover, one can find that the fol-
lowing ratio value is bigger than the value in (23).  That means 
the stronger H  performance of the designed controller of this 

paper is guaranteed. 

        
20 20
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 

 S S  (25) 

Based on the above results, it can be concluded that the pro-
posed design method provides some improvements to the 
method of (Caigny et al., 2010) in controlling the uncertain 
ship autopilot system (1). 

V. CONCLUSION 

This paper proposed a gain-scheduled controller design 
method for the discretized ship autopilot system subject to the 
pole assignment and passivity constraints.  To completely sim-
ulate the uncertainty, the LPV system and gain-scheduled 
scheme were used to guarantee the robustness.  For the wave 
effect of ship, the external disturbance was also considered and 
attenuated via the passivity performance.  Besides, the closed-
loop poles were assigned in the specific region to improve the 
transient responses of the ship autopilot system.  For the con-
siderations, some sufficient conditions were derived via PDLF 
to reduce the conservatism caused by pole-assignment con-
straint.  Moreover, the conditions were converted into LMI 
form which can directly apply convex optimal algorithm.  At 
last, the simulation results were provided to show the applica-
tion of the proposed method. 
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