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ABSTRACT 

 This paper proposes a static synchronous compensator 
(STATCOM) for use with a self-excited induction generator 
(SEIG)-based wind farm.  The STATCOM applies a damping 
controller based on an optimal adaptive intelligent controller 
(OAIC) comprising the critical network, the functional link-
based Elman neural network (FLENN), and the genetic algo-
rithm hybrid time-varying particle swarm optimization 
(GAHTVPSO) algorithm.  The OAIC improves the damping 
power oscillations in the SEIG-based series-compensated 
wind farm system.  The node-connecting weights of the pro-
posed FLENN and the critical network are trained online via a 
backpropagation (BP) algorithm, and the GAHTVPSO adjusts 
the learning rates of the BP algorithm to improve the learning 
ability of the neural network.  A performance analysis confirms 
the superior damping characteristics of the proposed controller.  
Moreover, the internal power fluctuations to the power system 
can be effectively alleviated under variable wind-power gen-
eration conditions.  

I. INTRODUCTION 

Wind generation systems are receiving considerable atten-
tion as they are safe, renewable, and clean power sources.  Var-
ious control strategies that achieve the desired speed control of 
wind generators have been proposed (Waldner and Erlich, 

2014).  In all types of wind induction generators, the most im-
portant characteristic is the self-excitation effect.  The so-
called self-excited induction generator (SEIG) offers the best 
control performance in an isolated system.  The rated voltage 
is set by the SEIG excitation capacitor connected to the stator 
terminal.  Sub-synchronous resonance (SSR) is an important 
state of a power system, in which the power network ex-
changes energy with the SEIG-based wind turbine generator at 
the fundamental frequencies of the combined power system 
below the sub-synchronous frequency (Golshannavaz et al., 
2011).  SSR occurs via energy interchange between the series 
capacitors on the transmission lines and the mass–spring sys-
tem of the turbine‐generator shaft.  The SSR phenomenon can 
lead to failure of the wind turbine generator shaft and instabil-
ity of the wind farm at the end of the series-compensated trans-
mission lines. 

The static synchronous compensator (STATCOM) pro-
posed by Gyugyi and Hingorani is the most versatile and pow-
erful flexible alternating-current transmission system (Singh et 
al., 2014, Elsamahy et al., 2014a, Elsamahy et al., 2014b).  The 
STATCOM increases the system security by increasing the 
transient stability limit, limiting the short circuit currents and 
overloads, and alleviating blackouts and damping oscillations 
of power systems.  Therefore, for mitigating SSR, STATCOM 
is the most suitable device.  Recently, several studies have pro-
posed STATCOM control methods that improve the damping 
of low-frequency power oscillations in power systems (Mo-
hamed El-Moursi et al., 2010).  In one approach, the physical 
control loops have been embedded in state feedback control 
techniques that mitigate the oscillations (Chen et al., 2010), 
whereas the other approach (Fan and Miao, 2012) includes the 
design of auxiliary SSR damping controller and selection of 
control signals.  However, the former approach makes only a 
limited improvement, while the latter approach is of limited 
applicability because the design of the controller is very com-
plicated to be suitable for large-scale wind farms.  STATCOM-
based methods have their own limitations because the wind-
farm power systems to which the STATCOM is connected are 
themselves very complex.  This complexity reduces the efficiency  
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Fig.1. Configuration of the STATCOM system with a series- compen-

sated power system of a SEIG wind farm 

 
 

of the control schemes in mitigating SSR, thus degrading the 
control performance.  Other studies have proposed external 
controllers using intelligent control schemes such as fuzzy 
logic controllers, neuro-fuzzy external controllers, hybrid 
fuzzy/linear quadratic regulator controllers, and a gray-based 
genetic algorithm (Salman et al., 2007; Hong and Luo, 2009; 
Li and Dinh-Nhon, 2013).  Although these intelligent control-
lers have improved the control of low-power oscillations by 
STATCOM, many parameters in these algorithms (such as the 
learning rate) must be determined by trial-and-error.  To re-
move the above problems, this paper proposes an optimal 
adaptive intelligent controller (OAIC) for STATCOM that mit-
igates SSR and dampens the power-system oscillations.  The 
proposed OAIC considerably improves the limitations of the 
previous studies, and is more suitable for complex, unstable, 
and stochastic wind farms compared to the existing methods.  
The OAIC comprises the critical network, a functional link-
based Elman neural network (FLENN), and the genetic algo-
rithm hybrid time-varying particle swarm optimization 
(GAHTVPSO) algorithm. 

The Elman neural network (ENN) is a partially recurrent 
network model proposed by Elman in 1990 (Lin et al., 2013). 
An Elman network is dynamically characterized by its internal 
connections, and does not require the system state as an input 
or training signal.  Because it out performs static feed-forward 
networks, the ENN is extensively applied in dynamic systems, 
but its convergence and training speed are usually very slow, 
precluding the algorithm’s use in complex systems.  Instead, 
this study adopts the FLNN, which improves the performance 
of ENN by inputting linearly independent trigonometric basis 
functions, which are used for functional expansion of the 
FLNN in the extended classification space.  Moreover, the 
FLNN can capture the nonlinear input–output relationships 
among a suitable set of polynomial inputs because the high-
order effects are incorporated in the higher dimensions of the 
input-variable space.  In this manner, the FLNN can effectively 
approximate a nonlinear function (Lin et al., 2009; George and 
Panda, 2012); therefore, it is suitable for complex power 

system applications such as the wind-farm system examined in 
this study. 

Particle swarm optimization (PSO), pioneered by Kennedy 
and Eberhart in 1995 (Toh and Yau, 2005; Chen et al., 2007; 
George and Panda, 2012), was inspired by social animal be-
haviors such as fish schooling, bird flocking, and swarming.  
The genetic algorithm is another population-based and self-
adaptive optimization tool, which has optimally solved diffi-
cult multidimensional discontinuous problems in various 
fields (Lin et al., 2009).  Unlike GA, PSO can retain the 
knowledge of good solutions, which is known to all particles. 
A recently proposed parameter-tuning approach, called PSO 
time-varying acceleration coefficients, has been shown to im-
prove the performance of PSO (Srivastava et al., 2012; 2014).  
The present study proposes an OAIC for STATCOM that mit-
igates SSR and dampens the power-system oscillations.  The 
OAIC is intended to improve the intransient stability of the 
STATCOM damping controller.  The transient system re-
sponses of the system to three-phase short circuit faults and 
changing wind conditions are investigated in an integrated 
(SEIG)-based wind farm.  Without retuning, conventional con-
trollers deliver poor performance under such changes; how-
ever, this weakness is overcome by the FLENN approach.  The 
critical network estimation is related to the FLENN controller, 
ensuring the optimal damping control signal to the STATCOM. 
However, the initial values of FLENN and the critical network 
learning rates are normally difficult to obtain.  Therefore, this 
study also optimizes the learning rates byapplying a crossover 
operation to the particles’ chromosomes in the GAHTVPSO 
algorithm. 

II.  ANALYSIS OF SYSTEM MODELS 

Fig. 1 shows the system examined in this study (Mohamed 
El-Moursi et al., 2010).  The system contains100 MW SEIG-
based wind turbine generators connected to the electric grid 
through a fixed series-compensated SATCOM-based transmis-
sion system and a transformer XTS.  The compensation capac-
itor Xc improves the power factor of the power grid; reduces 
the loss of the power supply transformer and transmission line; 
and improves the power supply efficiency and the quality of 
the power grid.  The proposed STATCOM has a rated capacity 
of 70MVar, and its voltage source converter (VSC) is con-
nected in shunt with the AC power system via a shunt trans-
former Tsh, which primarily satisfies the real power demand at 
the common DC link.  The SEIG provides the required reactive 
power via the shunt capacitor CF.  Because the capacitor de-
mand for excitation varies with the speed of the induction gen-
erator (IG), CF is connected across Bus S of the IG, whose volt-
age Vs varies with generator speed.  The parameters of the stud-
ied system are listed in the Appendix. 

2.1 Wind Turbine Characteristics 

The wind turbine intakes the variable wind and outputs the 
mechanical power that turns the generator rotor blades (Lin  
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Fig. 2 Internal controller of STATCOM 

 
 

et al., 2011; Lin et al., 2013).  The available mechanical power 
output by a wind turbine is obtained as follows: 

   31
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Equation (1) is anonlinear function of the tip speed ratio (TSR) 
λ where 

 r r

V

 


 (2) 

Note that Cp is a function of the TSR and β, and isgenerally 
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2.2 SEIG 

The wind generator chosen for this study is a three-phase 
SEIG, where Tm and Te are expressed as follows (Eberhart and 
Shi, 2014; Farkhani and Najafi, 2014): 
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In general, the torque equation of a SEIG is obtained using 
the following: 
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The machine model of a SEIG can be described in the rotor-
rotating reference frame as follows: 

 
Fig. 3 Externallinear damping controller of STATCOM 
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2.3  STATCOM external control 

The STATCOM of the shunt device be haves as a synchro-
nous compensator but without inertia.  The STATCOM pro-
vides both capacitive and inductive compensation, supporting 
the bus voltage by independently controlling its output current.  
The real current controls the real power, while the active cur-
rent controls the reactive power and exchanges it between the 
STATCOM and the power system.  Moreover, the STATCOM 
improves the stability of the power system.  The STATCOM is 
controlled by external auxiliary control loops that dampen the 
SSR, thus improving the reference signal of the line voltage 
controller.  The basic control structure of the STATCOM is 
shown in Fig. 2. 

In this figure, VS
* and Vdc

* are the reference signals of the 
bus voltage and the dc link voltage of STATCOM, respectively. 
Furthermore, Kp1, Kp2, Ki1, and Ki2 are the proportional and in-
tegral gains of their corresponding PI controllers.  Vshq0 and 
Vshd0 are the initial voltages along the quadrature (q) and direct 
(d) axes, respectively, in the synchronous reference frame.  
The m and α derived from the direct and quadrature voltage 
components are then provided to the PWM generator that pro-
vides the gating signals for the power electronic switches in 
the VSC. 

The external damping controller of STATCOM (composed 
of the filter and damping controller; Fig. 3) improves the dy-
namic stability of the system.  The inputs of the damping loops 
are the generator speed deviation Δωm (which is easily ob-
tained by measurement and analysis) and the terminal voltage 
deviation ΔVS relative to the external controller.  The primary 
function of STATCOM is regulating the line voltage at the 
connection point, and hence damping all SSR modes in all se-
ries compensations.  However, under the varying operating 
conditions of the power system, the performance of the linear  
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Fig. 4 OAIC for STATCOM 

 
 

external controller will be significantly affected by changes in 
wind speed.  To optimize the performance of the power system, 
the controller parameters are fine-tuned at a single operating 
point 

III.  OAIC DESIGN FOR THE DAMPING 
CONTROLLER 

The input signal of the damping controller should be in 
phase with the generator rotor speed deviation Δωm and the 
variation of terminal voltage ΔVS.  The proposed OAIC com-
prises three parts: the adaptive critic network, the FLENN, and 
the GAHTVPSO algorithm, as shown in Fig. 4.  The function 
expansion in the FLENN improves the accuracy of the func-
tion approximation.  The proposed FLENN and critic network 
is configured using the online tuning learning rates by the 
GAHTVPSO.  The adaptive critic network (Swakshar and 
Ganesh, 2008; 2013) provides suitable training signals for the 
FLENN controller.  The proposed OAIC can provide near-op-
timal results in complex and uncertain nonlinear systems; 
hence, it can solve the Hamilton–Jacobi–Bellman equation of 
optimal control (Swakshar and Ganesh, 2008; 2013). 

3.1 FLENN 

Fig. 5 shows the design of the FLENN controller.  The net-
work comprises an input layer, a hidden layer governed by a 
sigmoidal function S(x)=1/(1 + e−x), a context layer, and an 
output layer connected to an FLNN.  The context layer is fed 
back to itself with a time delay z−1.  Using a feed forward neu-
ral network structure, the FLNN generates a set of linearly in-
dependent functions, and then functionally expands the ele-
ments of the input variables.  The trigonometric functions in 
the FLNN are more quickly computed than Gaussian, sine, and 
cosine functions.  Moreover, the FLNN improves the perfor-
mance results when the outer product term is included in the 
function expansion (George and Panda, 2012).  The input vec-
tor X=[X1, X2]T, a functional expansion of a trigonometric pol-
ynomial basis function, can be written in the enhanced space 
as ψ=[ψ1, ψ2,…ψp]=[1, X1, sin(πX1), cos(πX1), x2, sin(πX2), 
cos(πX2), X1X2], where X1X2is the outer product term.  Further-
more, the FLNN output is expressed as the linear sum of the 
yth node, as follows: 

 
Fig. 5 Design of the FLENN controller 
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Using the FLENN input X=[Δωm, ΔVS]T, the power system 
directly transmits the numerical inputs to the next layer.  The 
context neurons of the FLENN serve as memory units that 
store the output signal of the hidden layer.  The FLENN can 
exploit these context neurons to increase the dynamic charac-
teristics of the network.  The node outputs O of each FLENN 
layer are superscripted by their layer number and subscripted 
by the signal number of their related output as follows: 
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The objective of the FLENN controller is to train the pa-
rameters wij, wrj, wjy, and wEyt o determine the best match to the 
control signal O(5)=ΔVdamping.  This output is added to the volt-
age reference Vs* of the PI1 controller (Fig. 4). 

3.2  Critic network 

A critic network can be continuously trained to learn the 
cost-to-go function associated with the power system.  This  
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Fig.6 Critic network 

 
 

ability is paramount in real time optimal-control operations 
subjected to changes in configuration and operating conditions.  
The cost-to-go function J in Bellman’s equation of dynamic 
programing is then estimated by the critic network as follows 
(Swakshar, 2013): 
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Here, the utility function U(t)determines the form of the op-
timal cost-to-go function, and γ represents the discount factor 
(0–1).  The utility functions Ua(t) and Ub(t) of the critic net-
work are determined by 

        1 2a m m mU t t t t         (18) 

        1 2b S S SU t V t V t V t       (19) 

The total utility function is then obtained as follows: 

      a bU t U t U t   (20) 

The node output Oc of each layer of the critic network is 
superscripted by its layer number and subscripted by the signal 
number of its related output as follows: 
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Eqs. (18) and (19) are expected to improve the STATCOM 
performance of both the generator speed deviation Δωm and 
the line voltage deviation ΔVS.  The critic network in Fig. 6 has 
a four-layer feed-forward network structure.  After the training 
process, the critic network optimally controls the minimization 
of J(t).  Accordingly, the FLENN controller optimizes the 
damping control signal provided to the STATCOM. 

3.3 Training process of the FLENN and critic network 

The gradient of the error function defines the direction of 
change of the function.  Therefore, searching the opposite side 
of the gradientwill minimize the cost-to-go function.  In the 
present study, the error function E in the gradient descent al-
gorithm was assumed as themean squared error function 
(Swakshar and Ganesh, 2008). 
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where J*(t) is the reference value of the cost-to-go function. 
When handling deviation signals, J*(t) is set to zero.  
The changes in a BP algorithm are directly proportional to 

the amount by which the weights wab are modified.  Therefore, 
they can estimate the instantaneous changes in the negative 
gradient.  In the online algorithm of the critic network and pro-
posed FLENN, the gradient is computed by the chain rule as 
shown in Eqs. (26) and (27).  The weights wab of the critic net-
work and the weights WFLENN of the FLENN are adjusted by 
Eqs. (27) and (28), respectively.  The training procedure is de-
tailed in a previous study (Lin et al., 2011). 
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where 𝜂  is the learning rate of wab,. 𝑊ிாேே ൌ
ሾ𝑤 ,𝑤 ,𝑤௬,𝑤ா௬ሿ , and 𝜂ி ൌ ሾ𝜂 , 𝜂, 𝜂௬, 𝜂ா௬ሿ  are the 
learning rates of 𝑊ிாேே. 

The learning rate values ηij, ηrj, ηjy, ηEy, and ηab of the OAIC 
should be properly set in the BP algorithm.  If the learning rate 
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is too large or too small, the progress of the BP algorithm is 
compromised and the learning process may fail.  To avoid this 
possibility, the optimal learning parameters in the present 
study are optimized by the GAHTVPSO algorithm. 

3.4 Adjustment of Learning Rates by the GAHTVPSO Al-
gorithm 

To further improve the online learning ability of the OAIC, 
the learning rates ηij, ηrj, ηjy, ηEy, and ηab are tuned by the 
GAHTVPSO algorithm, in which each particle adjusts its po-
sition according to its own experience and those of its neigh-
bors.  The “experience” parameters include the current velocity, 
current position, and the best previous position of a particle 
and its neighbors. 

Stochasticity in the algorithm is introduced by two pseudo-
random sequences r1~U(0, 1) and r2~U(0, 1).  Let Ri

d and pbes-
ti

d be the current position and current personal best position re-
spectively, where d is the dimension of the search space.  The 
velocity update law is given by Eq. (30), and the inertia weight 
is set to ω=0. The parameter settings are reduced by the 
GAHTVPSO algorithm. Eqs. (31) and (32) modify the time-
varying acceleration coefficients c1 and c2, respectively ( Sri-
vastava et al., 2014).  
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Where d
iv  and d

iR  are the current velocity and position of 
the particle, respectively.  Nmax is the maximum number of it-
erations. c1i and c2i are the initial parameter settings, andc1f and 
c2f are the final parameter settings. 

Step 1: Define the basic conditions 

The current positions Ri
d= [R1, R2, R3, R4, R5] and learning 

rates (ηij, ηrj, ηjy, ηEy and ηab) must be optimized within their 
minimum and maximum ranges. 

Step 2: Initialize the location and velocity 

The initial locations Ri
d(N) and velocities vi

d(N) of all parti-
cles are randomly generated in the search space.  The initial 
pbest of a particle is initialized by its current position and the 
gbest of a group is selected from among the pbests.  The ele-
ments in the vector Ri

d(N) are randomly generated by the fol-
lowing equation: 

  ,d d d
i min maxR U      (34) 

where 𝑈ሾ𝜂
ௗ , 𝜂௫ௗ ሿ  designates the outcome of auniformly 

distributed random variable ranging overthe given lower and 
upper bounded values ηmin and ηmax of a learning rate. 

Step 3: Determination of the fitness function 

Each vector 𝑅
ௗ,  must be assigned with a fitness value.  In 

this study, the fitness values were calculated by the following 
fitness function: 

 
   

1

0.1 m m s S

FIT
abs abs V V  


   

 (35) 

where FIT is the fitness value and abs(·) is the absolute func-
tion.  The small constant 0.1 prevents the denominator from 
approaching infinity. 

Step 4: Selection of pbest and gbest: 

Each particle 𝑅
ௗmemorizesits own fitness value and selects 

its personal best from its own track record as 𝑝𝑏𝑒𝑠𝑡
ௗ . The 

maximum vector in the population of 𝑝𝑏𝑒𝑠𝑡
ௗ  vector 

ൣ𝑝𝑏𝑒𝑠𝑡ଵ
ௗ ,𝑝𝑏𝑒𝑠𝑡ଶ

ௗ ,⋯𝑝𝑏𝑒𝑠𝑡ௗ൧is then obtained.  Moreover, each 
particle 𝑅

ௗ is preset to 𝑝𝑏𝑒𝑠𝑡
ௗin the firstiteration, and the par-

ticle with the best fitness value among the various pbests is 
assumed as the global gbest. 

Step 5: Check for updates in gbest: 

The gbest particle position does not change over some des-
ignated time steps, but is eventually changed by a crossover 
operation on its GA chromosome.  The position and velocity 
are reorganized as follows: 

       31d d d
i i iR N c rand gbest R N      (36) 
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 (38) 

where c3 is the acceleration factor, and rand() represents a uni-
form random number between 0 and 1.  pparent and pchild are the 
parent and child generations of the current position, respec-
tively.  Similarly, vparent and vchild are the parent and child gen-
erations of the velocity, respectively.  β is the interpolation 
value between the parent and child generations, and is selected 
from a uniform random distribution between 0 and 1.  
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Fig. 7 Comparison results of Case 1. Plotted are the (a)generator speeds, (b) electrical torque responses, (c) mechanical speed deviations, (d)real power 

of the wind farm, (e) voltage of the bus terminal, (f) reactive power in STATCOM, (g) real power in STATCOM, (h) reactive current in 
STATCOM, and (i) real current in STATCOM. 
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Fig. 8 Comparison results of Case 2. Plotted are (a) real power of the wind farm, (b) voltage of the bus terminal, (c) generator speed, and (d) electrical 

torque responses. 

 
 

Step 6: Update the velocity and position 

Adding the new velocity to the current position of the par-
ticle, the next position of the particle is calculated by Eqs. (30) 
and (33). 

Step 7: Check for convergence 

Steps 3–6 are repeated until the best fitness value of gbest 
is not obviously improved, or until a specified number of gen-
erations are reached.  The final highest-fitness value𝑔𝑏𝑒𝑠𝑡

ௗis 
the optimal learning rate (ηij, ηrj, ηjy, ηEy and ηab)of the OAIC. 

IV. CASE STUDY 

The damping enhancement of a wind farm system installed 
with the OAIC was evaluated in a simulation case study.  The 
series-compensated wind farm in Fig. 1 (Mohamed El-Moursi  
et al., 2010) was built in a PSCAD/EMTDC environment.  The 
FLENN and critic network controllers with the GAHTVPSO 
algorithm were implemented in a MATLAB program module.  
The parameters and initial values of the system were similar to 
those in an earlier work (Mohamed El-Moursi  et al., 2010), 

and are given in the Appendix.  The following cases illustrate 
the proposed method under different operating conditions.  

4.1 Case1: Series-capacitive compensation 

The series-compensated wind farm was simulated while in-
creasing the series-capacitive compensation from 0.15 to 
0.3pu at 25-second intervals.  To examine whether the pro-
posed OAIC outperforms other intelligent control systems, the 
OAIC results were compared with those of the adaptive neuro 
fuzzy inference controller (ANFIC) algorithm (Farrag and 
Putrus, 2012) using the parameters of the earlier work (Farrag 
and Putrus, 2012).  Fig. 7 (a) compares the generator speeds 
without compensation, with STATCOM plus ANFIC (Farrag 
and Putrus, 2012), and with STATCOM plus the proposed 
OAIC.  When STATCOM is installed with the proposed OAIC 
damping controller, the variations in generator speed were sig-
nificantly reduced.  Panels (b) and (c) of Fig. 7 compare the 
electrical torque responses and the mechanical speed devia-
tions in each system, respectively.  The uncompensated system 
was subjected to SSR resonance caused by torsional modes, 
and the mechanical speed was easily diverged.  STATCOM  
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Table 1.Performance results ofseveral methods 

Method Interactive Number CPU Time(s) Mean Square Error (10−3) Accuracy (%) 

GAHTVPSO 37 1.48 1.23 98.77 

MPSO 33 1.32 4.36 95.64 

IPSO 57 2.28 5.08 94.92 

Fuzzy 98 3.92 12.35 87.65 

 
 

Table 2. Normalized performance indices in all cases 

PI of normalized Case Without STATCOM Linear damping controller ANFIC [25] OAIC 

Case 1 1.0 1.39 1.62 1.86 

Case 2 1.0 1.58 2.13 2.41 

Case 3 1.0 1.73 1.93 2.31 

Overall 1.0 1.56 1.72 2.19 
 
 

installed with the OAIC damping controller clearly improved 
the power-system performance by mitigating the SSR. 

The wind farm maintained the real power at 80 MW with 
respect to the transmission line (Fig. 7(d)).  In the bus terminal 
voltage control (Fig. 7(e)), the STATCOM generated a small 
reactive power of 0.15 MVar (Fig. 7(f)) to maintain the bus 
voltage.  It also changed the reactive power while maintaining 
the real power at the desired level (Fig. 7(g)). Fig. 7(h) and (i) 
show the reactive and real currents in STATCOM, respectively. 
The real current controls the real power, while the reactive cur-
rent controls the reactive power exchanged between 
STATCOM and the power system.  In this case, the proposed 
OAIC damping controller for STATCOM exerted a stronger 
damping effect than the proposed ANFIC (Farrag and Putrus, 
2012). 

4.2 Case2: Stability against wind speed change 

The wind speed was changed from 14 to 11 m/s at the 10th 
second, and from 10 m/s to 14 m/s at the 15th second.  Fig. 8(a) 
compares the real-power responses to these changes in the 
transmission line under linear damping control and STATCOM 
with OAIC control.  The wind-speed variations affected the 
real power of the SEIG-based wind farm.  When the 
STATCOM with OAIC was installed, the amplitudes of the 
real power changes were reduced, implying improved control.  
Similarly, changing the wind speed altered the voltage magni-
tudes of the bus (Fig. 8(b)).  Obviously, combining the de-
signed OAIC damping controller with the STATCOM sup-
pressed the voltage variations and regulated the terminal bus 
voltage to 1 pu.  The dynamic damping of the electrical torque 
and the rotor speed oscillations in the wind turbine are shown 
in Figs. 8(c) and (d), respectively.  The proposed OAIC 
achieved better control than the linear damping controller, and 
clearly suppressed the variations.  However, both damping 
controls effectively mitigated the power oscillation and im-
proved the system stability. 

Fig. 8 Comparison results of Case 2.  Plotted are (a) real 
power of the wind farm, (b) voltage of the bus terminal, (c) 
generator speed, and (d) electrical torque responses. 

4.3  Case3: Transient stability against a three- phase fault 

A three-phase short circuit (of duration 0.1 s) was simulated 
at the 25th second.  In this scenario, the damping characteris-
tics of the proposed OAIC were compared with those of the 
linear damping controller.  When the fault occurred, the 
STATCOM with OAIC exerted a stronger damping effect on 
the real power than the linear damping controller (Fig. 9(a)). 
Moreover, in the system installed with STATCOM with the 
OAIC damping controller, the rotor speed and electrical torque 
of the wind SEIG more quickly recovered their corresponding 
steady states than in the system installed with the linear damp-
ing controller (Fig. 9(b) and (c)).  As three-phase faults cause 
large fluctuations in the temporary voltage of the line bus, 
maintaining the transient stability of the bus voltage is nor-
mally a high priority.  As shown in Fig. 9(d), STATCOM with 
the OAIC damping controller effectively improved the voltage 
transient stability, and quickly restored the voltage to its 
steady-state bus voltage of 1 pu. 

4.4 Case 4: Performance comparison of OAIC 

Panels (a), (b), and (c) of Fig. 10 compare the learning rates 
ηij, ηrj, ηjy, ηEy, and ηab of FLENN and the critic network in 
Cases 1, 2 and 3, respectively.  Because the online-tuning 
learning rates in the proposed OAIC are based on the 
GAHTVPSO algorithm, the OAIC is ideally suited to uncer-
tain situations.  Fig. 10(d) compares the convergence perfor-
mances of the GAHTVPSO and three existing algorithms 
(modified PSO (MPSO), improved PSO (IPSO) and fuzzy 
PSO) (Wai et al., 2014; Yang and Kiang, 2014).  The numerical 
results are reported in Table1.  The table clarifies the higher 
accuracy and faster convergence rate of GAHTVPSO than 
the other PSO approaches.  According to the convergence  
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Fig. 9. Comparison results of Case 3. Plotted are (a)real power of the wind farm,(b)generator speed,(c) electrical torque responses, and (d)voltage of 

the bus terminal. 

 
 

 
Fig. 10.  Comparison results in Case 4. Panels (a), (b), and (c) plot the learning rates of FLENN and critic network in Cases 1, 2, and 3, respectively. 

(d) Convergence characteristics of various PSO algorithms. 
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characteristics of the various PSO algorithms (Fig. 10(d), the 
proposed algorithm better identified the nonlinear dynamic 
system than the other algorithms.  The performance of the 
OAIC was further evaluated by the performance index (PI), 
calculated as follows ( Salman et al., 2007): 

 2 2
3

1 1

1 1
PI =

N N

m
k k

V
N N


 

 
    

 
   (39) 

Table2 shows the normalized results of the overall perfor-
mance indices in the three case studies.  The proposed OAIC 
damping controller for STATCOM exerted a better damping 
effect than the linear damping controller, reducing the oscilla-
tions in the power system by ~40%. 

APPENDIX 

The parameters of the system examined in this study are 

enumerated below. 

Power system of the SEIG wind farm (Mohamed El-Moursi et 
al., 2010): 

S=100MVA, VS=690V, VR=20kV, PF=0.975 lagging, 
XTS=XTR=j0.08pu, RE=0.02498Ω, frequency=50Hz, stator re-
sistance=0.006pu, real power=97MW, XE=0.0899mH, 
XC=4387μF, stator inductance=0.141pu, CF=1840μF, ρ= 1.25 
kg/m3, J= 1.32×10-3Nms2, B= 5.78×10-3 Nm s/rad, r= 0.5m. 

STATCOM with the control system (Mohamed El-Moursi et al., 
2010): 

SSTATCOM=70MVA, Ls=0.0001H Kp2=0.0015,Kp1=0.001, 
Ki1=0.15, Ki2=0, V=0.69KV, Rs=0.04Ω,frequency=50Hz 

OAIC parameters: 

Initial learning rates ηij=ηrj=ηjy=ηEy=ηab=0.5, c1f=c2f=c1i=c2i=1, 
c3=1, β=0.1, α=0.1, P=15, d=5 

NOMENCLATURE 

ρ air density (kg/m3) 
A disk radius of the rotor blades (m2) 
Vω wind velocity (m/sec) 
Cp power coefficient  
λ tip speed ratio  
ωr  turbine speed  
β blade pitch angle  
r blade radius 
Tm  mechanical torque 
Te electrical torque 
ωe electrical angular frequency 
np number of poles 
J inertia moment of WTG  
B friction coefficient of the generator 
vd d axis stator voltages  

vq q axis stator voltages are the  
id d axis stator currents 
iq q axis stator currents  
Ld d axis stator inductance 
Lq q axis stator inductances;  
λd d axis stator flux linkages 
λq q axis stator flux linkages;  
R stator resistance;  
ωs inverter angular frequency 
Ifd d-axis magnetizing current 
Lmd d-axis mutual inductance 
m modulation index of PWM 
α phase shift of PWM 
𝑓መ௬ outer product term 
wEy  connective weight  
ψE  function expansion output  
θ basic functions 
wij weights of the input to hidden layer  
wrj weights of the context layer to hidden layer.  
α self-connecting feedback gain of context neurons  
wjy weights between the hidden and multiplication layer 
wo output layer weight 
P population size  
d  particle dimensionality 
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