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ABSTRACT 

A time-series study was conducted to determine both the 
aggregate and specific Volatile Organic Compounds (VOCs) 
concentrations at a Marine Terminal.  An in-situ aggregate 
data of VOC concentrations and some environmental param-
eters were logged by means of an in-borehole gas monitor 
called Gasclam (Ion Science, UK).  A Tenax TA sorbent tube 
incorporated into and to work in parallel with the Gasclam was 
used to adsorb bulk concentrations of VOCs and subsequently 
desorbed (for characterization) using Thermal Desorption/Gas 
Chromatography-Mass Spectroscopy (TD/GC-MS) technique.  
The result shows aggregate VOC concentrations of 31385 
ppm and 17140 ppm in wells I and II respectively over the 
monitoring period.  The total concentrations of adsorbed 
VOCs in wells I and II are 4.17 x 102 mg/m3 and 1.12 x 103 
mg/m3 respectively.  Among the identified VOCs (many of 
which exceeded their standard limits) are those considered to 
be hazardous to human health and environment.  The study 
revealed that the marine terminal site is potentially hazardous, 
and hence, requires active remediation.  

I. INTRODUCTION 

VOCs comprise of a group of organic compounds which 

are volatile under normal atmospheric temperature and pres-
sure (Katy et al., 2009).  They can come from a variety of 
natural sources (Ramirez et al., 2010), however; their presence 
in the environment is mainly due to spillage/leakage of sol-
vents or fuels associated with industrial and commercial ac-
tivities such as their production, storage, distribution, and uses 
in industrial processing (Department of Environment, 1995; 
Tillman and Weaver, 2005; Steinmann, 2008; Katy et al., 
2009).  Accordingly, VOCs have been observed to be among 
the most frequently detected contaminants in soil and ground 
water around landfills and brownfield sites (West et al., 1995; 
EA, 2004).  They can also be found in former gas works 
(Thomas and Lester, 1994; Dor et al., 2001; Allen, 2002), oil 
refineries (Cetin et al., 2003; Pandya et al., 2006; Tiwari et al., 
2010), and even in homes (from furnishings and consumer 
household products) (Steinmann, 2008; BS ISO 16000-9, 
2006; BS ISO 16000-10, 2006; Venn et al., 2001; Hers et al., 
2001; Coward et al., 2001; Coward et al., 2002). 

In marine terminals, significant quantities of VOCs are of-
ten released into the atmosphere during the loading, offloading 
and transportation of crude oil by ships (Howard and Nikolas, 
2001; Tamaddoni et al., 2014; Choi et al., 2018).  Buhaug et al., 
(2009) explained that about 2.4 million tons of VOCs, repre-
senting approximately USD 700 million in value, are lost 
every year in the transportation of crude oil.  These emissions 
constitute not only economic losses but also threat to both 
human health (HSE, 2000; ATSDR, 2001; IARC, 2004; Rowe 
et al., 2007; Argyropoulos et al., 2010) and the environment 
(Kesselmeier et al., 2000; Possanzini et al., 2002; IPCC, 
2007). 

For example, VOCs are flammable and can cause fire (HSE, 
2000).  At elevated concentrations in the environment, VOC 
can also be a concern to human health because of their poten-
tial as carcinogens (IARC, 2004; Rowe et al., 2007).  In the 
presence of sunlight, VOCs can react with oxides of nitrogen 
(NOx) to produce ground level ozone and photochemical 
smog1. The main organs adversely affected by VOCs include the 
liver, kidneys, spleen, and stomach, as well as the nervous, cir-
culatory, reproductive, immune, cardiovascular, and respiratory 
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Fig. 1.  Inclusion of a sorption cartridge into the basal section of a Gasclam unit 

 
 

systems (Rowe et al., 2007).  There is, therefore, an increasing 
concern about VOCs emission due to their toxicity and 
widespread occurrence (Ott et al., 1978; Lynge et al., 1997; 
Srivastava et al., 2005; Maximilian et al., 2009; Sergio et al., 
2012; Nwachukwu, 2014; Nwachukwu and Henry, 2016). 

Given the economic, human health and environmental ef-
fects of VOCs released from marine terminals; the Interna-
tional Maritime Organization (IMO) regulated VOC emis-
sions from ships through the 15th regulation of MARPOL 
Annex VI 2010 (International Convention for the Prevention 
of Pollution from Ships, 2008, Standards for vapour emission 
control systems, Guidelines for the development of a VOC 
management plan, 2009).  This regulation requires the use of a 
government-approved vapour emission control system for the 
loading of crude oil or petroleum products.  A variety of 
studies have been conducted to determine the best techniques 
for VOC control systems by considering the economic and 
environmental effects (Khan and Ghoshal, 2000; Shonnard 
and Hiew, 2000; Howard and Nikolas, 2011; Huang et al., 
2011; Lee et al., 2013 ).  However, many countries have 
adopted Marine Vapour Recovery Systems (MVRSs) to meet 
IMO regulations. 

Whilst a lot of research has been conducted on VOCs 
emissions recovery, there is no single research on the quanti-
fication of VOCs from the surroundings of marine terminals. 
Note that the quantity of VOCs emitted and recovered directly 
depends on the amount of VOCs spilled/leaked.  Apart from 
loading, unloading and transportation activities, VOCs can be 
spilled/leaked into the water body and the surrounding soils by 
many other ways, including the following2: 

 Construction activity: Ports and terminals are fre-
quently situated on reclaimed, low-lying land, with 
imported fill, which sometimes contains contaminated 
materials. 

 Storage facilities: Liquid bulk tanks with connecting 

pipelines could be subject to sudden and accidental 
structure failure, or gradual ground seepage and 
leakage. 

 Ancillary operations: Tank cleaning, ballast water 
treatment, shipbuilding, ship repairing or demolition, 
metal finishing and plating, fire protection activities, 
paint shops, foundries, and manufactured gas works 
all present environmental exposures. 

It is, therefore, not enough to monitor only the amount of 
VOCs released into the atmosphere; there is, also, a require-
ment to take into consideration those released into the sur-
rounding environment as they are much closer to the receptors.  
It was sequel to this that this research was conducted.  

Whilst there is often a requirement to monitor VOCs as in 
this case; current VOC monitoring techniques are often of low 
resolution to determine their representative concentrations 
(Nwachukwu and Anonye 2012).  An in-borehole monitor 
(Gasclam) which collects aggregate VOCs concentration at 
high temporal resolution was deployed whilst a Tenax TA 
sorbent tube incorporated into and to work in parallel with this 
instrumentation was used to adsorb bulk concentrations of 
VOCs and subsequently desorbed (for characterization) using 
Thermal Desorption/Gas Chromatography-Mass Spectrosco-
py (TD/GC-MS) technique.  

Gasclam was developed by Salamander Ltd – a company 
founded by Dr Stephen Boult of The University of Manchester 
in 1996.  Gasclam won the Innovation Technology prize in the 
Northwest Business Environment Awards in 20073.  Gasclam 
was designed to operate remotely; specifically in 50 mm ID 
monitoring wells.  Gasclam is an improvement upon existing 
measurement technologies as it allows continuous collection 
of information about the movement and build-up of under-
ground gases.  This is unlike other ground-gas monitors which 
only take spot measurements.  Gasclam monitors and records 
the following: CH4, CO2, O2, CO, H2S, VOCs, atmospheric 

2Marsh.com 
3https://www.manchester.ac.uk/discover/news/ground-gas-gizmo-boosts-brownfield-building/ 
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Table 1.  Volatile Organic Compounds Analytical Results, Sample: MI 14859 (Marine Terminal – Borehole 1) 

S/N Name of compounds Individual TIC 
peak Area 

Total mass 
(mg) 

Total concen-
tration (mg/m3) 

% of the total 
area 

Cumulative % 
of total area 

1 Undecane 2.69E+09 9.42E-02 1.96E+01 4.71E+00 4.71E+00 

2 Methylcyclohexane 1.04E+09 3.62E-02 7.54E+00 1.81E+00 6.52E+00 

3 4-Methyl-1-hexene 1.01E+09 3.53E-02 7.36E+00 1.77E+00 8.28E+00 

4 2,6,10-Trimethyldadecane 8.98E+08 3.14E-02 6.54E+00 1.57E+00 9.85E+00 

5 Dadecamethylene glycol 8.33E+08 2.91E-02 6.07E+00 1.45E+00 1.13E+01 

6 3-Methylhexane 7.34E+08 2.57E-02 5.35E+00 1.28E+00 1.26E+01 

7 3-Methylheptane 7.33E+08 2.56E-02 5.34E+00 1.28E+00 1.39E+01 

8 Ethylbenzene 6.69E+08 2.34E-02 4.87E+00 1.17E+00 1.50E+01 

9 3-Methyldecane 6.65E+08 2.32E-02 4.84E+00 1.16E+00 1.62E+01 

10 2-Methylhexane 6.58E+08 2.30E-02 4.79E+00 1.15E+00 1.73E+01 

11 Heptane 5.96E+08 2.08E-02 4.34E+00 1.04E+00 1.84E+01 

12 1,2-Dipropylcyclopentane 5.37E+08 1.88E-02 3.91E+00 9.38E-01 1.93E+01 

13 1,3,5-Trimethylbenzene 5.36E+08 1.87E-02 3.90E+00 9.36E-01 2.03E+01 

14 4-Methylheptene 5.33E+08 1.87E-02 3.89E+00 9.32E-01 2.12E+01 

15 2-Methylheptane 5.28E+08 1.85E-02 3.85E+00 9.23E-01 2.21E+01 

16 Methylcyclopentane 4.67E+08 1.63E-02 3.40E+00 8.16E-01 2.29E+01 

17 1-Methyl-2-pentylcyclohexane 4.65E+08 1.63E-02 3.39E+00 8.13E-01 2.37E+01 

18 Dadecane 4.61E+08 1.61E-02 3.36E+00 8.05E-01 2.45E+01 

19 3-Methyloctane 4.61E+08 1.61E-02 3.36E+00 8.05E-01 2.54E+01 

20 2,5-Dimethylheptane 4.53E+08 1.58E-02 3.30E+00 7.91E-01 2.61E+01 

21 2-Methylundecane 4.41E+08 1.54E-02 3.21E+00 7.71E-01 2.69E+01 

22 5-Methyldecane 4.37E+08 1.53E-02 3.18E+00 7.63E-01 2.77E+01 

23 2-Methylpentane 4.37E+08 1.53E-02 3.18E+00 7.63E-01 2.84E+01 

24 2-Cyclohexylundecane 4.15E+08 1.45E-02 3.03E+00 7.26E-01 2.92E+01 

25 2,6-Dimethylnonane 4.11E+08 1.44E-02 3.00E+00 7.19E-01 2.99E+01 

26 2,6-Dimethyldecane 4.10E+08 1.43E-02 2.98E+00 7.16E-01 3.06E+01 

27 2-Methyldecane 4.01E+08 1.40E-02 2.92E+00 7.01E-01 3.13E+01 

28 2,6-Dimethyloctane 3.73E+08 1.30E-02 2.72E+00 6.52E-01 3.20E+01 

29 Hexane 3.55E+08 1.24E-02 2.58E+00 6.20E-01 3.26E+01 

30 Ethylcyclohexane 3.38E+08 1.18E-02 2.47E+00 5.91E-01 3.32E+01 

31 4-Methyldecane 3.34E+08 1.17E-02 2.43E+00 5.83E-01 3.37E+01 

32 Octane 3.17E+08 1.11E-02 2.31E+00 5.54E-01 3.43E+01 

33 3-Methylundecane 3.06E+08 1.07E-02 2.23E+00 5.35E-01 3.48E+01 

34 2,3-dimethyloctane 2.96E+08 1.04E-02 2.16E+00 5.17E-01 3.54E+01 

35 2,6-Dimethyldecane 2.77E+08 9.69E-03 2.02E+00 4.84E-01 3.58E+01 

36 4-Methylundecane 2.75E+08 9.61E-03 2.00E+00 4.80E-01 3.63E+01 

37 2-Hexyl-1-decanol 2.42E+08 8.45E-03 1.76E+00 4.22E-01 3.67E+01 

38 cis-1,3-Dimethylcyclohexane 2.37E+08 8.28E-03 1.72E+00 4.14E-01 3.72E+01 

39 4-Methyloctane 2.33E+08 8.14E-03 1.69E+00 4.06E-01 3.76E+01 

40 1-Tridecene 2.31E+08 8.07E-03 1.68E+00 4.03E-01 3.80E+01 

41 3-Methylpentane 2.05E+08 7.16E-03 1.49E+00 3.58E-01 3.83E+01 

42 Chlorobenzene 2.02E+08 7.07E-03 1.47E+00 3.53E-01 3.87E+01 
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Table 1.  (Continued) 

S/N Name of compounds Individual TIC 
peak Area 

Total mass 
(mg) 

Total concen-
tration (mg/m3) 

% of the total 
area 

Cumulative % 
of total area 

43 Xylene 1.64E+08 5.72E-03 1.19E+00 2.86E-01 3.90E+01 

44 4-Methylnonane 1.60E+08 5.59E-03 1.16E+00 2.79E-01 3.92E+01 

45 1-Methyl-2-propylcyclohexane 1.57E+08 5.48E-03 1.14E+00 2.74E-01 3.95E+01 

46 Nonane 1.50E+08 5.24E-03 1.09E+00 2.62E-01 3.98E+01 

47 2-Methyloctane 1.47E+08 5.13E-03 1.07E+00 2.56E-01 4.00E+01 

48 3-Methylnonane 1.28E+08 4.47E-03 9.30E-01 2.23E-01 4.03E+01 

49  3-Ethyl-2-methylheptane 1.25E+08 4.39E-03 9.14E-01 2.19E-01 4.05E+01 

50 2,6-Dimethylundecane 9.77E+07 3.42E-03 7.12E-01 1.71E-01 4.06E+01 

51 Phytol 9.12E+07 3.19E-03 6.64E-01 1.59E-01 4.08E+01 

52 Pentane 8.67E+07 3.03E-03 6.31E-01 1.51E-01 4.10E+01 

53 1-Ethyl-2-methylbenzene 5.55E+07 1.94E-03 4.04E-01 9.69E-02 4.11E+01 

54 2-Methylbutane 4.71E+07 1.65E-03 3.43E-01 8.23E-02 4.11E+01 

55 2-Butyl-1,1,3-trimethylcyclohexane 2.38E+07 8.31E-04 1.73E-01 4.15E-02 4.12E+01 

56 Unidentified compounds 3.37E+10 1.18E+00 2.45E+02 5.88E+01 1.00E+02 

 
∑ PID VOCs signal (ppm) ∑ VOC mass (mg) Total vol. (m3) ∑VOCs conc.(mg/m3) 

31385 2.00E+00 4.80E-03 4.17E+02 

 
 

Table 2.  Volatile Organic Compounds Analytical Results, Sample: MI 148960 (Marine Terminal – Borehole 2) 

S/N Name of compounds Individual TIC 
peak Area 

Total mass 
(mg) 

Total concen-
tration (mg/m3) 

% of the total 
concentration 

Cumulative % 
of total con-
centration 

1 1,3,5-Trimethylbenzene 2.17E+09 8.82E-02 2.05E+01 1.83E+00 1.83E+00 

2 Methylisopropylbenzene 1.77E+09 7.19E-02 1.67E+01 1.49E+00 3.32E+00 

3 1-Ethyl-2-methylbenzene 1.56E+09 6.36E-02 1.48E+01 1.32E+00 4.63E+00 

4 1,4-Dimethyl-2-ethylbenzene 1.51E+09 6.14E-02 1.43E+01 1.27E+00 5.90E+00 

5 2,4-Diethyl-1-methylbenzene 1.48E+09 6.03E-02 1.40E+01 1.25E+00 7.15E+00 

6 1,2,4,5-Tetramethylbenzene 1.48E+09 6.03E-02 1.40E+01 1.25E+00 8.40E+00 

7 1,2,3-Trimethylbenzene 1.42E+09 5.77E-02 1.34E+01 1.20E+00 9.60E+00 

8 1,2,4-Trimethylbenzene 1.41E+09 5.73E-02 1.33E+01 1.19E+00 1.08E+01 

9 2,6-Dimethylundecane 1.27E+09 5.18E-02 1.21E+01 1.07E+00 1.19E+01 

10 1-Methyl-2-propylbenzene 1.15E+09 4.67E-02 1.09E+01 9.67E-01 1.28E+01 

11 1, 2,3,4-Tetramethylbenzene 1.12E+09 4.55E-02 1.06E+01 9.42E-01 1.38E+01 

12 2,6-Dimethyldecane 1.06E+09 4.31E-02 1.00E+01 8.93E-01 1.47E+01 

13 1,3-Diethyl-5-methylbenzene 1.03E+09 4.20E-02 9.76E+00 8.69E-01 1.55E+01 

14 2-Ethyl-1,4-dimethyl-Benzene 8.92E+08 3.63E-02 8.44E+00 7.52E-01 1.63E+01 

15 1-Phenyl-1-butene 8.54E+08 3.48E-02 8.08E+00 7.20E-01 1.70E+01 

16 1-Ethyl-4-isopropylbenzene 8.52E+08 3.47E-02 8.06E+00 7.18E-01 1.77E+01 

17 3-Methyl-2-butenyl(1 benzene) 8.52E+08 3.47E-02 8.06E+00 7.18E-01 1.84E+01 

18 1-Ethyl-4-isopropylbenzene 8.16E+08 3.32E-02 7.73E+00 6.88E-01 1.91E+01 

19 Pentamethylbenzene 7.86E+08 3.20E-02 7.43E+00 6.62E-01 1.98E+01 

20 1,3-Diethylbenzene 7.81E+08 3.18E-02 7.40E+00 6.59E-01 2.04E+01 
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Table 2.  (Continued) 

S/N Name of compounds Individual TIC 
peak Area 

Total mass 
(mg) 

Total concen-
tration (mg/m3) 

% of the total 
concentration 

Cumulative % 
of total con-
centration 

21 2,6-Dimethyloctane 7.40E+08 3.01E-02 7.00E+00 6.23E-01 2.11E+01 

22 1-Sec-butyl-2,4-dimethylbenzene 6.25E+08 2.54E-02 5.91E+00 5.27E-01 2.16E+01 

23 4-Methyldecane 6.20E+08 2.52E-02 5.87E+00 5.23E-01 2.21E+01 

24 Cyclopropylbenzene 5.83E+08 2.37E-02 5.52E+00 4.91E-01 2.26E+01 

25 p-Isopropyl benzaldehyde 5.46E+08 2.22E-02 5.17E+00 4.60E-01 2.31E+01 

26 1,3-Dimethyl-2-ethylbenzene 5.37E+08 2.18E-02 5.08E+00 4.52E-01 2.35E+01 

27 Undecane 5.08E+08 2.07E-02 4.80E+00 4.28E-01 2.39E+01 

28 Hexylcyclohexane 4.89E+08 1.99E-02 4.62E+00 4.12E-01 2.44E+01 

29 3-Ethylhexane 4.88E+08 1.99E-02 4.62E+00 4.12E-01 2.48E+01 

30 2,4-Dimethyl-1-ethylbenzene 4.71E+08 1.92E-02 4.46E+00 3.97E-01 2.52E+01 

31 1-Chlorooctane 4.60E+08 1.87E-02 4.36E+00 3.88E-01 2.56E+01 

32 1,2-Dimethylbenzene 4.48E+08 1.82E-02 4.24E+00 3.77E-01 2.59E+01 

33 1-Sec-butyl-4-methylbenzene 4.22E+08 1.72E-02 4.00E+00 3.56E-01 2.63E+01 

34 tert-Pentylbenzene 4.07E+08 1.66E-02 3.85E+00 3.43E-01 2.66E+01 

35 Heptane 3.42E+08 1.39E-02 3.24E+00 2.88E-01 2.69E+01 

36 1,4-Diethyl-2-methylbenzene 3.41E+08 1.39E-02 3.23E+00 2.87E-01 2.72E+01 

37 2,6,10-Trimethyltetradecane 3.37E+08 1.37E-02 3.19E+00 2.84E-01 2.75E+01 

38 1-Ethyl-5-methylcyclopentene 3.33E+08 1.36E-02 3.15E+00 2.81E-01 2.78E+01 

39 Methylcyclohexane 3.26E+08 1.33E-02 3.08E+00 2.74E-01 2.80E+01 

40 (1-Methyldene) cyclobutane 3.23E+08 1.31E-02 3.05E+00 2.72E-01 2.83E+01 

41 2-Methylheptane 3.21E+08 1.31E-02 3.04E+00 2.70E-01 2.86E+01 

42 Octane 3.13E+08 1.27E-02 2.96E+00 2.64E-01 2.89E+01 

43 1,2,3-Trimethylcyclopetene 2.84E+08 1.15E-02 2.68E+00 2.39E-01 2.91E+01 

44  2,5-Dimethyl-heptane 2.80E+08 1.14E-02 2.65E+00 2.36E-01 2.93E+01 

45 p-Xylene 2.64E+08 1.07E-02 2.50E+00 2.22E-01 2.95E+01 

46 Hexane 2.58E+08 1.05E-02 2.44E+00 2.18E-01 2.98E+01 

47 2-Chloro-2-methylpentane 2.57E+08 1.04E-02 2.43E+00 2.16E-01 3.00E+01 

48 1-Chlorooctadecane 2.51E+08 1.02E-02 2.37E+00 2.11E-01 3.02E+01 

49 Cis-1,3-Dimethylcyclohexane 1.99E+08 8.09E-03 1.88E+00 1.68E-01 3.04E+01 

50 Heptylcyclohexane 1.95E+08 7.95E-03 1.85E+00 1.65E-01 3.05E+01 

51 3-Methylhexane 1.64E+08 6.66E-03 1.55E+00 1.38E-01 3.07E+01 

52 1-Heptadecyne 1.61E+08 6.53E-03 1.52E+00 1.35E-01 3.08E+01 

53 Ethylcyclohexane 1.49E+08 6.05E-03 1.41E+00 1.25E-01 3.09E+01 

54 Methylcyclopentane 1.17E+08 4.77E-03 1.11E+00 9.87E-02 3.10E+01 

55 3-Methylcyclopentene 1.06E+08 4.32E-03 1.01E+00 8.95E-02 3.11E+01 

56 2-Methylpentane 7.73E+07 3.14E-03 7.31E-01 6.51E-02 3.12E+01 

57 2,6,10-Trimethyldodecane 5.72E+07 2.33E-03 5.41E-01 4.82E-02 3.12E+01 

58 3-Methylpentane 2.87E+07 1.17E-03 2.71E-01 2.41E-02 3.13E+01 

59 Pentane 1.68E+07 6.83E-04 1.59E-01 1.41E-02 3.13E+01 

60 2-Methylbutane 2.91E+06 1.18E-04 2.75E-02 2.45E-03 3.13E+01 

61 Unidentified compounds 8.16E+10 3.32E+00 7.72E+02 6.87E+01 1.00E+02 
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∑ PID VOCs signal (ppm) ∑ VOC mass (mg) Total vol. (m3) ∑VOCs conc.(mg/m3) 

17140 4.83E+00 4.30E-03 1.12E+03 

 
 

V
O

C
 C

on
ce

nt
ra

ti
on

(p
pm

)
V

O
C

s 
C

on
ce

nt
ra

ti
on

(p
pm

)

VOC (ppm)

O2 (%)

VOC (ppm)

O2 (%)

Well 1

Well 2

O
2 C

on
ce

nt
ra

tio
n

(%
)

800

200
190
180
170
160
150

25
20
15
10
5
0

O
2 C

on
ce

nt
ra

tio
n

(%
)

25
20
15
10
5
0

600

400

200

7/6
/12

8/6
/12

9/6
/12

10
/6/

12

11
/6/

12

7/6
/12

8/6
/12

9/6
/12

10
/6/

12

11
/6/

12

0

 
Fig. 2. Time series data from boreholes 1 and 2; showing variability in VOCs and O2 Concentrations. The monitoring period is for five (5) days 

(7:6:201 – 11:6:2012). 

 
 

pressure, borehole pressure, pressure differential, temperature 
and water level.  It is made from stainless steel and is also 
intrinsically safe.  It is environmentally sealed and has ingress 
protection rated IP-68.  Gasclam is battery operated and can be 
powered for up to three months whilst operating on an hourly 
sampling frequency.  Target applications for the Gasclam 
ground gas monitor include landfill for long term profiling, 
brownfield sites for development issues, monitoring for coal 
mine fires, leakage of crude/petroleum, solvent storage and 
filling stations, oil refineries for local compliance/regulation, 
and for below ground carbon capture and storage monitoring 
regime4.  

Gasclam has the following technical information: (i) it has a 
memory which can record and store 65,000 time/date stamped 
readings, (ii) it weighs 7kg (13.2 lbs), (iii) It has overall length 
of 85cm (33.5 inches), (iv) the head diameter is 10.8 cm (4.25 
inches), (v) its operation temperature range is –5 to +50 °C or 
41°F to 122°F, (vi) it is powered by Duracell 1.5v LR20 
MN1300 cells or a rechargeable battery pack (Nwachukwu, 
2015a, b, c; Nwachukwu and Ugwuanyi, 2012). 

1. Monitored Site Information 

This is a Maine marine terminal with less than 200,000 
barrels of storage capacity and situated at 601 Danforth Street 
Portland, ME 04102 along the eastern coast of the United 
States.  It is also known as Merrill's Marine Terminal after the 
owner Paul D. Merril.  It is in an industrial section of the town 
with other industrial companies bordering its property.  This 
property has been used as a marine terminal for over 36 years.   

No active remedial systems are active or planned and there has 
not been any significant spills reported at this site in the past 
ten years. 

II.  MATERIALS AND METHODS 

Two Gasclam units, equiped with PID sensors were each 
modified by integrating a sorption tube containing Tenax 
TA (poly-2, 6-diphenyl-p-phenylene oxide) adsorbent (see 
Figure 1) (Nwachukwu, 2015a, b, c).  This particular sorbent 
was chosen based on its outstanding selective properties in 
adsorption and desorption of VOCs over others gases 
(Kroupa et al., 2004).  Some of such properties include high 
thermal stability (Brown, 1996), high hydrophobicity and 
rapid desorption kinetics (Rothweiler and Wager, 1991; Saba 
et al., 2001; Barro et al., 2005; Lee et al., 2006; Singer et al., 
2007; Schripp et al., 2007; Barro et al., 2009), high break-
through volume (Camel and Caude, 1995; Baya and Siskos, 
1996;; Borusiewicz and Zięba-Palus, 2007; Ras and Borrull, 
2009; Gallego et al., 2010), inertness towards most pollutants, 
high mechanical strength, and a good adsorption range of 
VOCs (Woolfenden, 2010).  It has a surface area of 35m2 g-1 
and a pore volume of 2.4 cm3 g-1 (Kroupa et al., 2004).  VOCs 
adsorbed on Tenax TA sorbent tube were analysed by thermal 
desorption/gas chromatography-mass spectroscopy (TD/GC-MS); 
a method which has already been standardised internationally 
(ISO 16000-6, 2004). 

1.  In-situ VOC sample collection 

4(www.ionscience.com/products/gasclam) 
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The modified Gasclam units were installed to monitor VOC 
concentrations continuously on an hourly sampling basis for 
up to five days from 7/6/2012 to 11/6/2012.  The in-situ con-
tinuous data from the PID (figure 1) were downloaded while 
the sorbent tubes were detached from the Gasclam and sealed.  
The sorbent tubes were subsequently analysed ex-situ for 
specific VOCs by Thermal Desorption/Gas Chromatog-
raphy-Mass Spectrometry (TD/GC-MS). 

2.  Ex-situ VOC sample analysis 

Analyses of the samples were conducted by heating the 
sorbent tubes to 300oC.  The volatile components were then 
trapped on a cold trap, held at -10oC, prior to desorption onto 
the GC column.  Desorption of the TD tubes was carried out 
using a Markes International 50:50 TD system coupled to an 
Agilent GC/MS.  Data acquisition in scanning mode was via a 
PC running Agilent Chemstation software. 

The mass of each of the identified VOCs was calculated 
relative to the standard by assuming that the area of their peaks 
on the chromatogram is proportional to their masses.  The 
relationship is shown below: 

 Ais/Qis =Ax/Qx (1). 

Where Ais is the area of the internal standard on the chro-
matogram, Qis is the amount of internal standard = 500ng, Ax is 
the area of specific VOC on the chromatogram and Qx is the 
unknown amount of specific VOCs.  The VOCs analytical 
results are shown in Tables 1 and 2 respectively. 

III.  RESULTS AND DISCUSSION 

Figure 2 represents the time series datasets obtained from 
two boreholes in the investigated site.  The datasets show 
significant variability in VOCs concentration.  The range of 
VOCs concentration in borehole 1 is 220 ppm to 692 ppm with 
an average concentration of 327 ppm whilst in borehole 2; it 
ranges from 174 ppm to 193 ppm with an average concentra-
tion of 179 ppm.  As observed, the concentration of VOCs in 
borehole 1 is much higher than that in borehole 2, both in 
range and average concentration.  An inverse relationship 
appeared to exist between VOCs concentration and atmos-
pheric oxygen in borehole 1, but such relationship is not 
clearly portrayed in borehole 2.  The inverse relationship 
suggests atmospheric pressure to be a control on the variability 
of VOC concentration in borehole 1. 

Whilst bulk VOC concentration automatically depicts that a 
particular site constitutes risk; it does not define the level of 
risk until the bulk VOC concentration is resolved into its spe-
cific components.  This implies also that a site may contain 
lower bulk VOC concentrations than another but at the same 
time be more hazardous.  Due to this, the bulk VOC concen-
trations of 31385 ppm and 17140 ppm from boreholes 1 and 2 
respectively were characterised into their specific components 
as shown in Tables 1 and 2. 

The specific volatile organic compounds identified and 
quantified from the sorbent samples collected from this site 
are as shown in Tables 1 and 2 below.  The Tables display 56 
and 61 compounds for boreholes I and II respectively, and 
their quantity including the unidentified ones. 

The total concentration of adsorbed VOCs in Borehole I is 
4.17 x 102 mg/m3 whilst in Borehole II, it is 1.12 x 103. Un-
decane and 2-Butyl-1, 1, 3-trimethylcyclohexane have the 
highest and lowest concentrations of 19.60 mg/m3 (4.71%) 
and 0.173 mg/m3 (0.042%) respectively among the identified 
VOCs in Borehole I. In Borehole II; 1, 3, 5-Trimethylbenzene 
and 2-Methylbutane have the highest and lowest concentra-
tions of 20.05 mg/m3 (1.83%) and 0.028 mg/m3 (0.003%) 
respectively among the identified VOCs. 

A good number of the identified VOCs in the site are in-
cluded in the USEPA list of 107 compounds whose toxicity 
and volatility produce a potentially unacceptable inhalation 
risk to receptors – a property which makes the site a poten-
tially dangerous one. The highest in occurrence among the 
VOCs are derivatives of benzene - a compound which has 
been recognized as human carcinogen (IARC, 2004). They 
were observed mostly in Borehole II (see Table II). This result 
was expected since the borehole is closest to the terminal 
unlike borehole I which is some distance away from it. This is 
typical of a site contaminated by gasoline (Choi et al., 2018) 
and similar to the findings of Nwachukwu and Dick (2016), 
Nwachukwu (2015a) and Nwachukwu (2015b). Although 
bulk VOC concentration does not immediately determine risk 
level; in the case of this site, borehole II which had higher bulk 
VOC concentration also has higher number of very dangerous 
specific VOCs. This observation, together with the relative 
closeness of borehole II to the terminal, points to the fact that 
the risk due to VOC emission at the site reduces away from the 
terminal. Indication is that people working within the terminal 
are more susceptible to VOC risk, and hence requires personal 
protective equipments. 

Whilst identification of specific VOCs can be useful in de-
fining the extent of risk constituted by a site or borehole in 
comparison to others, their quantification can be more useful 
especially when compared to set standards. An example is 
shown in Table 3 for some selected dangerous specific VOCs.   

As shown in Table 3, Ethylbenzene displays a value of 4.87 
mg/m3 in Borehole I, and this value is 4.02 mg/m3 higher than 
the set limit of 0.85 mg/m3. Indication is that Ethylbenzene 
exceeded the emission limit by several orders of magnitude in 
Borehole I – the only well it was detected in. Similarly, 
p-Xylene which was observed in the two wells had its emis-
sion limit exceeded by 0.69 mg/m3 and 2.0 mg/m3 in Boreholes 
I and II respectively during the monitoring period.  The same 
thing applies to 1,2,3-Trimethylbenzene, 1,2,4-Trimethylbenzene, 
1,3,5-Trimethylbenzene, 1,2,3,4-Tetramethyl benzene,  and 
1,2,3,5-Tetramethyl benzene, as these VOCs exceeded their 
emission limits with wide margin.  On the other hand, only 
n-Hexane and Methylcyclohexane displayed values that were 
lower than their emission limits among the selected com-
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pounds in the two Boreholes (Table 3). 

IV. CONCLUSIONS 

 This site is a potentially unsafe one especially to the op-
erators and customers of the Marine terminal. This is 
because; most of the identified VOCs are included in the 
USEPA list of VOCs recognised to constitute risks both 
to human health and the environment. 

 Moreover, a comparison of the individual concentrations 
of VOCs in this site with the EU-wide harmonized 
standard shows most of them have passed the set limits. 
The site is therefore recommended for remediation spe-
cifically to save the operators and people living close to it 
from potential VOC (especially benzene) hazards. 

 The use of a PID/Tenax enabled Gasclam allows robust 
sub-surface VOC gas/vapour data collection, enabling 
site zoning and a more effective targeting of remedial 
efforts on those zones of actual concern leading to sav-
ings in both time and money and helping to ensure that 
the remedial works are more sustainable in line with 
current guidance. 

 They also save frequent “snapshot” monitoring visits 
enabling a more accurate representation of sub-surface 
conditions to be obtained. 

RECOMMENDATION 

The data represented in this work were collected over a 
period of five days. Whilst the data are enough to identify 
specific VOCs in the studied site, more data need to be col-
lected over time to determine how the concentrations of VOC 
will change in future. 
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