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ABSTRACT 

In this paper, we propose a constraint-type fictitious time 
integration method (FTIM) for solving multi-dimensional 
non-linear elliptic-type partial differential equations.  Based 
on the variable transformation of FTIM, the original govern-
ing equation is transformed into a new parabolic equation of 
an evolution type by introducing a space-time variable, and a 
new time integration direction is obtained.  However, the 
space-time variable depends on the governing equation, 
boundary condition and fictitious time variable, especially due 
to the nonlinear effect.  Previous studies have not discussed the 
definition of these nonlinear parameter problems, which may 
result in severe numerical instability and inaccuracy.  To 
completely overcome this nonlinear parameter problem, a 
space-time variable with a minimum fictitious time size is 
introduced into the algorithm.  By imposing a constraint 
condition that involves the system energy in the space do-
main and the minimum fictitious time step, the proposed 
scheme can absolutely satisfy the stringent convergence 
criterion and can quickly approach the true solution, even 
under a very small time step.  More importantly, the con-
vergence speed depends only on a space-time variable.  The 
accuracy and efficiency of the scheme are evaluated by 
comparing the estimation results with those of previous 
studies.  The obtained results demonstrate that the proposed 
method efficiently finds the true solution and can signifi-

cantly improve both the accuracy and convergence.   

I. INTRODUCTION 

Partial differential equations (PDEs), such as the 
Sturm-Liouville equation, the Fredholm integral equation, the 
Laplace equation, the heat conduction equation, the wave 
equation and the Helmholtz equation, are widely applied in 
many fields of engineering and science, for example, to 
sloshing problems in oil tanks (Chen and Chiang, 1999; Chen 
et al., 2019), underwater acoustic problems (Schenck, 1969; 
Sayhi and Ousset, 1981; Chen and Ginsberg, 1995), heat 
conduction problems (Raghu Kumar et al., 1998; Chen, 2016, 
2018, 2019) and wave propagation (Chang et al., 2013).  Ac-
cording to the number of real characteristic lines of physical 
phenomena, the parabolic and hyperbolic types are classified 
into evolutionary PDEs.  A non-evolutionary PDE is typically 
referred to as an elliptic-type PDE because no real character-
istic line exists.  For solving PDEs, numerical methods, such 
as the finite difference method (FDM), the finite element 
method (FEM), the boundary element method (BEM), and the 
meshless (or meshfree) method are currently the most popular 
tools.  Among these methods, the FDM was the earliest to be 
developed; it is easily combined with discrete techniques to 
solve engineering problems.  However, for linear or nonlinear 
problems with noisy disturbances, the conventional FDM 
typically requires special numerical techniques for finding the 
solution. 

Over the past years, many studies have addressed elliptic 
boundary value problems (BVPs); for example, Chen and 
Zhou (2000) presented iteration methods for quasilinear el-
liptic BVPs, such as the mountain iteration algorithm, the 
scaling iterative algorithm, the monotone iterative algorithm, 
and the direct iterative algorithm.  A sequence of iterations is 
generated by various methods, and they are not typically 
guaranteed to converge to the true solution.  Additionally, 
regarding the numerical solutions of linear elliptic BVPs, 
many studies have been conducted; for example, Zhu et al. 
(1998) and Atluri and Zhu (1998) proposed meshless methods, 
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namely, the meshless local boundary integral equation method 
and the meshless local Petrov-Galerkin method, respectively, 
for solving nonlinear problems.  Cheng et al. (2003) developed 
the multiquadric and Gaussian radial basis function for solving 
PDEs.  Additionally, Cho et al. (2004) presented a Trefftz 
method for solving a class of second-order time-dependent 
PDEs, which include equations of parabolic, hyperbolic and 
parabolic-hyperbolic types.  Jin (2004) applied the method of 
fundamental solutions for the solution of the Laplace and 
biharmonic equations.  Hu et al. (2005) applied radial basis 
collocation methods for elliptic boundary value problems.  To 
overcome an ill-posed matrix, Liu (2007) modified the 
T-complete function of the Trefftz method for solving elliptic 
BVPs.  Hu and Chen (2008) combined the radial basis collo-
cation method and quasi-Newton iteration to address nonlinear 
elliptic problems.  Lasanen et al. (2018) used variational 
methods and Cameron–Martin space techniques to address 
elliptic BVPs with Gaussian white noise loads.  Colbrook et al. 
(2018) used the Fokas method (unified transform method) to 
solve elliptic problems and to increase the rate of convergence.  
Milewski (2018) proposes a stochastic approach that is based 
on the Monte Carlo method with a random walk technique for 
analysing second-order elliptic PDEs.  Based on the unified 
transform method, in conjunction with domain decomposition 
techniques, Grylonakis et al. (2019) proposed a hybrid ap-
proach for solving linear elliptic PDEs.  These numerical 
methods are effective for linear problems.  However, for non-
linear problems with noisy disturbances, low computational 
efficiency and a high number of iterations hinder the applica-
tion of these methods.  

A variable transformation of a time integration method, 
namely, the fictitious time integration method (FTIM), was 
proposed by Liu and Atluri (2008).  The FTIM was used to 
solve linear or nonlinear algebraic equations by introducing 
the fictitious time and using it to derive a system of nonau-
tonomous first-order ordinary differential equations that is 
equivalent to the original algebraic equations in n-dimensional 
space.  The roots for the original algebraic equations are ob-
tained by applying numerical integrations on the resulting 
ordinary differential equation, which do not require infor-
mation on the derivatives of the nonlinear algebraic equations 
or their inverses.  Furthermore, Ku et al. (2008) introduced a 
time-like function into the FTIM to accelerate the convergence. 
Tsai et al. (2010) further applied an FTIM in combination with 
the method of fundamental solution to solve Poisson-type 
nonlinear PDEs.  Chang (2010) applied an FTIM for mul-
ti-dimensional backward heat conduction problems.  To ac-
celerate the convergence rate and avoid the selection of the 
parameters, Liu et al. (2009) and Ku et al. (2010) proposed a 
scalar-based homotopy method that does not calculate the 
inverse of the Jacobian matrix for solving a system of non-
linear algebraic equations (NAEs).  However, the convergence 
of this scalar-based homotopy method is very slow, namely, it 
remains difficult to satisfy the tough convergence criterion. 
After that, Chen (2014), Chen et al. (2014) and Ku et al. (2015) 

applied the manifold-based exponentially convergent algo-
rithm (MBECA), the residual-norm-based algorithm (RNBA), 
and the dynamic Jacobian-inverse-free method (DJIFM), 
which are used to solve the NAEs and BVPs.  However, se-
lection of the parameters is difficult for these approaches, such 
as the viscosity-damping coefficient, the fictitious time step, 
the convergence criterion, and the fictitious termination time.  
More importantly, the convergence criterion of their algo-
rithms is specified by the fictitious termination time, which is 
impossible to determine at the initial time, namely, the con-
ventional FTIM does not guarantee that the solution can be 
determined when solving nonlinear complex problems.  It is 
inefficient and unstable when the algorithms must utilize a 
trial-and-error approach in the fictitious time domain. 

Recently, Chen (2016, 2018) applied the FTIM for mul-
ti-dimensional backward heat conduction problems and suc-
cessfully overcame the fictitious time step and convergence 
criterion problems.  However, for solving parabolic-type PDEs 
via the FTIM, the initial guess value depends on the final con-
dition, and the problem of determining the space-time coeffi-
cients remains unresolved.  Unfortunately, it will produce mul-
tipole solutions for elliptic PDEs due to the lack of an initial 
condition or termination conditions.  The space-time coefficient, 
fictitious time step and initial guess value will result in cou-
pling, especially for nonlinear problems.  In this paper, a con-
straint-type FTIM is proposed, which is an extension of the 
work of Liu and Atluri (2008), and a space-time constraint 
condition, which includes the computational domain, viscos-
ity-damping coefficient and fictitious time step, is proposed 
and applied.  A space-time variable with minimum fictitious 
time size can satisfy the NAEs simultaneously to avoid the 
selection of the parameters.  The remainder of this paper is 
organized as follows: Section 2 describes the mathematical 
formulation of the FTIM.  In Section 3, we evaluate the pro-
posed method in several numerical examples.  Finally, the 
conclusions of this study are presented in Section 4 

II.  NONLINEAR AND NONHOMOGENEOUS 
ELLIPTIC EQUATION 

Let us consider the following equations: 

( , , ) ( , , , , , , ), ( , , )x y zu x y z S x y z u u u u x y z   , (1)  

 ( , , ) ( , , ) on u x y z H x y z  , (2) 

where   denotes the three-dimensional Laplacian operator; 
 is the boundary of the problem domain  ; u is a scalar 
field; x, y and z are spatial variables; xu , yu and zu  represent 

derivatives of u with respect to x, y and z, respectively; and S 
and H are specified functions. 

1 Transformation into an evolutionary PDE and 
semi-discretization 
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First, we apply the following variable transformation: 

 ( , , , ) (1 ) ( , , )X x y z u x y z   , (3)  

where   is a fictitious time that differs from the real time t.   

As   approaches to zero in Eq. (3), X u . Therefore,  can 
be assigned a very small value but cannot be zero.  The main 
objective is to avoid integration in the spatial direction.  A 
numerical integral method can avoid numerical divergence.   
Here, we multiply Eq. (1) by a space-time coefficient 0  : 

 0 ( , , , , , , )x y zu S x y z u u u u      . (4)  

By multiplying the above equation by 1   and applying 
Eq. (3), we obtain 

 0 (1 ) ( , , , , , , )x y zX S x y z u u u u        . (5) 

Since ( , , )X u x y z   , from Eq. (3), we can add it on 
both sides of the above equation as follows: 

 (1 ) ( )
X

X S u u  



     


. (6)  

Finally, by setting  1u X   ,  1x xu X   , 

 1y yu X    and  1z zu X   , Eqs. (1) and (2) can be 

transformed into a parabolic-type PDE of the evolutionary 
type: 

(1 ) , , , , , , ,
1 1 1 1

( , , ) ,
1

yx z
XX X X X

X S x y z

X
x y z

  
    




    

    
 
 
 

 



 (7)  

 ( , , , ) (1 ) ( , , ), ( , , ) .X x y z H x y z x y z      (8)  

Applying a finite-difference discretization procedure to Eq. 
(7) yields a coupled system of ODEs: 
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 (9)  

where x , y  and z  are the uniform spatial lengths in the 
x-, y- and z- directions; ),,,()(,,  kjizji zyxXX  ; and X  
denotes derivative of X  with respect to  . 

2 Convergence criterion 

We use the fourth-order Runge-Kutta method (RK4) to in-
tegrate Eq. (9) starting from 0 .  In the numerical integra-
tion process, we can examine the convergence of kjiX ,,  at 
steps m and 1m  via 

 
1 21

, , , ,
, , 1

N
m m
i j k i j k

i j k

X X 



    , (10) 

where   is the selected criterion, 1N  is the number 
of grid points in each spatial direction and m is the 
iteration number in the fictitious time direction. 

3 Constraint condition of the space-time variable 

To avoid numerical divergence, a constraint condition of 
the space-time variable is imposed:  

 
1

v




, (11) 

 1
, 0 1, 0,xyz

xyz

E
E

 


 
        

 (12)  

where xyzE  is a constant.  In this paper, xyzE is defined as the 

system energy, which is based on the maximum mesh-grid 
numbers and the computational domain.  If xyzE  increases,   

will decrease.  If  ,  and xyzE  satisfy Eqs. (11) and (12), 

the FTIM can stably approach solutions.  For the convenience 

of description, in this paper, xyzE  is set to 410 in all examples. 

III.  NUMERICAL EXAMPLES 

We apply the FTIM, in combination with RK4, to the cal-
culations of the PDEs in numerical examples.  We are inter-
ested in the stability of our approach when the input measured 
data are subject to random noise for various problems.  We can 
evaluate the stability by increasing the random noise levels in 
the boundary condition: 

  ˆ 1 on ,u u R    (13) 

where u  is the boundary condition.  We use the function 
RANDOM_NUMBER in MATLAB to generate the noise data 
R, which are random numbers between [-1, 1], and σ is the 
level of absolute noise.  Then, the boundary condition with the 
noise data û  is employed in the calculations. 
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Table 1. Summary of the maximum absolute errors for 
various values of 1N ,  and xyzE . 

, 1i j U  
Number of  
iterations 

Maximum 
 absolute error 

1 21N 
1410  

 

410xyzE   

1010   

41.421 10  54.694 10  

510xyzE   

910   

51.303 10  42.309 10  

1 21N   

14010  
 

410xyzE   

13610   

41.4207 10  54.53 10  

510xyzE   

13510   

51.303 10  54.53 10  

1 41N 
1410    

410xyzE   

1010   

41.458 10  51.308 10  

510xyzE   

910   

51.339 10  42.439 10  

1 41N   

14010  
 

410xyzE   

13610   

41.456 10  51.136 10  

510xyzE   

13510   

51.339 10  51.136 10  

 
 

Table 2.  Summary of the maximum absolute errors for 
various initial guess values. 

1 41N       1410    
410xyzE   ( 1010  ) 

Number of 
iterations 

Maximum 
absolute error 

, 10i j U  41.606 10  51.136 10  

, 100i j U  41.729 10  51.136 10  

, 1000i j U  41.848 10  51.136 10  

 
 

1. Example 1 

To evaluate the numerical accuracy and stability of FTIM 
under steady-state conditions, an analytical solution of the 
Laplace equation is considered:  

 ( , ) cosxu x y e y . (14)  

The domain is specified by   , 0 1,0 1x y x y      . 

Here, we set the parameters as 1 41N  , 20010   , and 
1410  , and start with an initial value of , 1i j U .  Fig. 1 

presents a convergence plot.  The proposed scheme converges 

within 4104547.1   iterations.  The absolute errors are plotted 
in Fig. 2.  The maximum error of the numerical solution is  
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Fig. 1. Plot of the residual errors of Example 1. 

 
 

smaller than 51.2 10  in the proposed scheme and 54.9 10  
in the conventional FTIM by Liu (2008).  To evaluate the 
effects of the parameters 1N ,  , and xyzE , as shown in Table 
1, the parameters are set as specified above and the initial 
value is set to , 1i j U .  The order of the numerical errors 
converges in the range of 410  to 510  as the number of dis-
cretization points increases.  Additionally, from Table 2, the 
numerical result is insensitive to the initial guess value.  For a 
more stringent evaluation, we consider the application of a 
noise level of =5% .  The convergence plot and absolute 
errors are presented in Fig. 3.  Even with the noise, the max-
imum error of the numerical solution is smaller than 0.15 and 
convergence occurs within 41.4548 10  iterations.  Hence, 
this scheme provides high numerical accuracy and stability in 
the solution of this problem. 

2.  Example 2 

To evaluate the effect of the external force in the elliptic 
equation, an analytical solution is considered: 

 3( , ) 2u x y x xy   (15)  

of a linear Poisson equation: 

 6u x  . (16)  

The domain is specified by   , 1 1, 1 1x y x y        .  

Liu et al. (2006) have solved this problem via a Trefftz method 
and using the SVD regularization technique; however, the 
numerical results are unsatisfactory, with an error that is on the 
order of 010 .  Here, we set the parameters as 1 41N  , 

30010   , and 1410  , and we start from an initial value 
of , 1i j U .  Fig. 4 shows the convergence of the residual errors 

within 45.6944 10  iterations.  According to the numerical 
result, by using a small  , the computational efficiency can  
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Fig. 2. Plots of (a) the exact solution, (b) the numerical solution, and (c) 

the numerical errors 

 
 

be increased.  The numerical result and absolute errors are 
plotted in Fig. 5.  The maximum error of the numerical solution 
is smaller than 121.2 10 , which is better than the maximum 
error of 72.2 10 that was realized by Liu (2008).  With a 
noise level of =5% , the convergence speed and absolute 
errors are plotted in Fig. 6.  The maximum error of the numer-
ical solution is still smaller than 0.33, and the residual errors 
converge within 45.6939 10  iterations.  Hence, the proposed 
method can efficiently avoid the noise effect, and the error is 
very small. 
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Fig. 3. For Example 1, plots of (a) the residual errors and (b) the nu-
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Fig. 4. Plot of the residual errors of Example 2. 

 
 

3.  Example 3 

For the nonlinear effect, the numerical accuracy and sta-
bility of the proposed scheme are evaluated.  Consider the 
following nonlinear elliptic equation: 

 2 30.001u u u P     (17)  
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Fig. 5. Plots of the (a) exact solution, (b) the numerical solution, and (c) 

the numerical errors 

 
 
The analytical solution of Eq. (17) is 

    3 3 2 25
( , ) 3

6
u x y x y x y xy


    . (18)  

The exact value of P can be obtained via Eqs. (17) and (18). 

The domain is specified by   , 0 1,  0 1x y x y      .  
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Fig. 6. For Example 2, plots of (a) the residual errors and (b) the nu-

merical errors under the relative random noise level of 
5%=  . 
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Fig. 7. Plot of the residual errors of Example 3. 

 
 
The parameters are selected as 1 21N  , 30010   , and 

1410   and the initial value is , 1i j U .  Fig. 7 shows the 
convergence plot.  The results demonstrate that the residual 
errors are reduced to 1410  in 41.4194 10  iterations.  The  
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Fig. 8. Plots of the (a) exact solution, (b) the numerical solution, and (c) 

the numerical errors 

 
 

numerical results and absolute errors are plotted in Fig. 8.  The 
figure shows that the maximum error in the numerical solution 
is smaller than 131.884 10 , which is better than that of Atluri 
and Zhu (1998), namely, 510 ,  and that of Liu and Atluri 
(2008), namely, 64.4 10 .  Additionally, to evaluate the sta-
bility of the proposed algorithm, a random noise ( =5% ) is 
considered.  The residual errors are reduced to 1410  in 

41.4196 10  iterations.  Even with the noise disturbance, the  
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Fig. 10. Plots of (a) the exact solution and (b) the numerical errors. 

 
 

maximum error in the numerical solution is less than 0.155, as 
shown in Fig. 9.  From the obtained results, we find that the 
proposed method is highly effective and accurate for solving 
non-linear problems with random noise disturbances. and (c) 
the numerical errors. 

4.  Example 4 

To evaluate the numerical stability of the FTIM for an elliptic 
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equation with a nonlinear external force, a two-dimensional 
non-linear Poisson equation is considered: 

 2 6 4 2 26 4 4u u x x x y x y      . (19)  

The analytical solution of Eq. (19) is the same as in Ex-
ample 2. 

The domain is secified by   , 1 1, 1 1x y x y        . 

The parameters are 1 61N  , 30010   , and 1410  , and 

the initial value is , 1i j U .  The residual errors are reduced to 
1410  in 41.3686 10  iterations.  The numerical results and 

absolute errors are plotted in Fig. 10.   The figure shows that 
the maximum error in the numerical solution is smaller 
than 131.53 10 , which is better than the maximum error of 

71.8 10 that was realized by Liu (2008). 
When the traditional FTIM with different parameters 

( 1N and  ) fails, it shows a maximum error of 1.8. 
Additionally, to evaluate the stability of the proposed al-

gorithm, a random noise ( =5% ) is considered.  The residual 
errors are reduced to 1410  in 41.3675 10  iterations.  Even 
with the noise disturbance, the maximum error in the numer-
ical solution is less than 0.274, as shown in Fig. 11.  Similarly, 
for the nonlinear case, highly accurate numerical results are 
also obtained. 

5.  Example 5 

To evaluate the numerical stability, a non-linear Helmholtz 
equation that arises from wave propagation is considered: 

 2 ( )u k u u   (20)  

where )(2 uk  is set to 24u .  The analytical solution of Eq. (20) is 

 2 2

1
( , )

( 4)
u x y

x y


 
 (21)  
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Fig. 12.  Plots of the (a) exact solution, (b) the numerical solution, and (c) 

the numerical errors 

 
 

The domain is specified by   , 0x y x     

0.5,0 0.5y  .  We set the parameters as N1 =31, 30010   , 

and 1410  , and we start from an initial value of , 1i j U .  

The residual errors are reduced to 10-14 in 33.808 10  itera-
tions.  The numerical results and absolute errors are plotted in  



176 Journal of Marine Science and Technology, Vol. 28, No. 3 (2020) 

 

0.022

xy

0.02
0.018

0.016
0.014

0.012
0.01

0.008

0.006
0.004

0.002
0.5

0.4
0.3

0.2
0.1

0
0.1 0

0.2
0.3

0.4
0.5

0

0.05

0.01

0.015

0.02

0.025

A
bs

ol
ut

e 
E

rr
or

s

 
Fig. 13.  Plot of the numerical errors under a random noise level 

5%=  . 

 
 

Fig. 12.   The figure shows that the maximum error in the 
numerical solution is smaller than 81.206 10 .  The numerical 
result is better than that of Tsai et al. (2010).  Although the use 
of a time-like function can increase the number of discretiza-
tion points, it cannot overcome the convergence problem.  
Under a random noise of =5% , the residual errors are re-
duced to 1410  in 33.807 10  iterations.  Even with the noise 
disturbance, the maximum error in the numerical solution is 
less than 22.675 10 , as shown in Fig. 13. 

6.  Example 6 

To evaluate the convergence speed and the numerical sta-
bility in a large computational domain, this scheme can be 
extended to a three-dimensional non-linear Helmholtz equa-
tion with a singularity solution: 

 2 ( )u k u u   (22)  

where )(2 uk  is set as 26u .  The analytical solution of Eq. (22) 
is 

 
1

( , , )
( 1)

u x y z
x y z


  

. (23)  

The domain is specified by   , , 0 9,x y z x     

0 9,  0 9y z    .  The singularity is on 1x y z    .  

The parameters are set to 30010    and 1410  , and the 
initial value is set to , , 1i j k U .  The residual errors are reduced 

to 1410  in 55.35594 10  iterations for 1 21N   and in 
55.57978 10  iterations for 1 41N  .  The numerical results 

and absolute errors on the z= 4.5 plane are plotted in Fig. 14.  
The figure shows that the maximum error of the numerical 
solution is smaller than 53.431 10  with 1 21N   and smaller 

than 68.84 10 with 1 41N  .  Comparing the distribution of 

the absolute errors with that of Ku et al. (2009), the numerical  
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Fig. 14.  Plots of (a) the exact solution and the numerical errors with (b) 

N1=21 and (c) 41. 

 
 

solution is more accurate.  As the order of the residual errors is 
610  in Ku et al. (2009), it is highly difficult to satisfy the 

stringent convergence condition, especially by increasing the 
number of discretization points.  Despite the increased number 
of discretization points, the proposed scheme with a constraint 
condition is highly effective and stable for solving this highly 
nonlinear problem.  Moreover, with a random noise level of 

=5% , the residual errors are reduced to 10-14 in 5.3554  105 
iterations.  Even with the noise disturbance, the maximum error 
in the numerical solution is less than 22.432 10 , as shown in  
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Fig. 15.  Plot of the numerical errors under a random noise level of 
5%=  . 

 
 

Fig. 15.  When considering 210xyzE  ,  the residual errors are 
reduced to 1410  in 36.585 10  iterations for 1 21N   and 41.  
The convergence, numerical results and absolute errors on the 
z= 4.5 plane are plotted in Fig. 16. The figure shows that the 
maximum error of the numerical solution is smaller than 

68.4 10  with 1 21N   and 41.  When using the minimum 
value of xyzE , the convergence speed and numerical accuracy 
are independent from the mesh-grid numbers.  Hence, the 
proposed scheme can successfully avoid the influences of the 
mesh-grid and the viscous damping, and the precision does not 
change with the discrete technique. 

IV.  CONCLUSIONS 

In the paper, we have successfully developed a con-
straint-type FTIM for solving multi-dimensional non-linear 
elliptic-type PDEs.  Previously, there were severe drawbacks 
to using the conventional FTIM, such as the selection of the 
parameters: the viscosity-damping coefficient, the fictitious 
time step, the convergence criterion, and the fictitious terminal 
time.  To enhance the stability of the numerical integration of 
the discretized equations, a space-time variable with minimal 
fictitious time size is introduced into the algorithm.  More 
importantly, this constraint condition of the space-time varia-
ble can avoid the selection of the space-time coefficient and 
the fictitious time step and preserve the time integration di-
rection of the FTIM.  Moreover, the numerical solution is in 
satisfactory agreement with the exact solution, even under a 
random noise disturbance.  Additionally, it is surprising that by 
using a space-time variable with minimal fictitious time size, 
the proposed scheme can absolutely satisfy the stringent 
convergence criterion, and even under a very small time step, 
it can quickly approach the true solution.  Six linear and non-
linear numerical examples in two and three dimensions are 
evaluated, and the results demonstrate that the proposed 
scheme can operate more effectively and stably than the 
original scheme.  The FTIM has excellent robustness to noise 
and does not require the calculation of the derivatives of the 
nonlinear algebraic equations or their inverses.  For further  
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Fig. 16.  For Example 6, plots of (a) the residual errors and the numerical 

errors with (b) N1=21 and (c) 41  

 
 

practical engineering applications, this scheme can be com-
bined with dimensionless techniques to increase the compu-
ting efficiency and does not require the selection of parameters. 
Hence, it is concluded that the proposed schemes are accurate, 
stable, effective, and insensitive to the boundary conditions, 
even under noise level disturbances. 
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