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ABSTRACT 
This paper presents a simplified approach to analyze the 

dynamic response of offshore jacket platform based on Ti-
moshenko beam theory.  In the study, the jacket platform is 
simulated as a non-uniform cantilever beam structure subjects 
to random waves.  The assessment of dynamic performance is 
based on the power spectral densities, variances and spectral 
moments due to wave spectrum.  A combination of Pseu-
do-excitation and Ritz method is proposed and adopted, such 
as the dynamic characteristics of the jacket platform can be 
solved more efficiently without a need to examine the modes 
of vibration.  The proposed analytical method also provides a 
more straightforward solution to determine the dynamic re-
sponse of offshore jacket platforms that meet the required 
level of engineering practice for preliminary design.  

I.  INTRODUCTION 
For the offshore oil and gas industry, the template type 

jacket platform is the most widely used offshore structures in 
the shallow and intermediate waters.  The strength assessment 
for this type of offshore platforms has been well established 
for accurate structural analysis.  However, one of the most 
important considerations for engineering application and de-
sign is the dynamic response of offshore platforms subject to 
environmental forces (Moharrami,2014; Wei et al,2017).  In 
the current study, an alternative solution of utilizing a 

non-uniform cantilever beam concept to predict the dynamic 
response of offshore jacket platform under random waves is 
proposed.  

For structural analysis, a finite element (FE) model of a 
jacket platform is generally created using beam and some plate 
elements to simulate its behavior in the marine environment, 
so as to study the complex problems associated with structure, 
water and soil interactions as well as to provide a useful in-
sight of facilitating solutions for solving technical issues.  The 
recent advancement of computational capacity also enables 
the dynamic performance of jacket platform being evaluated 
using a more complex three-dimensional (3D) FE model for 
better analytical solution.  Having said, researchers and en-
gineers still seeking for other simplified but accurate dynamic 
analysis method to produce results equivalent to the actual 
response of structure under environmental forces with mini-
mum computational time. 

From the literature review of FE simulation, some re-
searchers proposed to simplify the FE model for simulating 
the behavior of offshore jacket platforms prior to detailed 
structural analysis.  Sunder and Connor (1981), however, 
examined the sensitivity of offshore jacket platforms due to 
wave by utilizing the two simplified numerical models with 
assumed rigid foundation.  Sunder and Connor further studied 
the effect of wave characteristics such as the wave period and 
height, inertia and drag coefficients, structural mass and hys-
teretic behavior of structural damping.  A simplified model to 
examine the impact of current velocity, inertia and drag force 
components, random phase angles and wave cancellation, as 
well as fluid-structure interactions was conducted by Hahn 
(1992).  Asgarian et al. (2004) deliberated a simplified method 
based on lumped mass model to determine the dynamic re-
sponse of offshore jacket structures in response to environ-
mental loading.  Zhou et al. (2014) used a simplified method 
based on Bernoulli-Euler beam theory for modelling the off-
shore jacket platform.  

Despite the Bernoulli-Euler beam theory had been regarded 
to be the most commonly used approach to simplify the FE 
model for simulating the offshore jacket platforms, it did not 
provide an upper bound solution for wave velocity.  Further, 
the natural frequencies of structure could be overestimated.  
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Nevertheless, the simulation of beam structures based on 
Bernoulli-Euler beam theory provided a better result for 
beams of slender section than that of short section.  Howev-
er，the beam theory was further enhanced by Timoshenko 
(1921) to include the influential factors of shear and rotary 
inertia.  As a result, the beam theory proposed by Timoshenko 
not only provided the structure with an upper bound solution 
for wave velocities, the natural frequencies and mode shapes 
could also be determined, which were found to be in good 
agreement with that of the two-dimensional theory (Timo-
shenko,1921; Fung, 1965; Graff, 1973; Labuschagne et al., 
2009; Balduzzi et al., 2016; Trahair and Ansourian, 2016; 
Bertolini et al., 2019).  Thus, it could be commented that the 
Timoshenko beam theory was more appropriate for analyzing 
the transient response of structures, especially so in situation 
that involved high frequency vibrations and deep beam sec-
tions. 

Several researchers carried out study on the vibratory re-
sponse of structures based on Timoshenko beam theory, and 
with Mindlin-Goodman method of time-dependent boundary 
conditions to determine the shifting functions (Herrmann, 
1955; Berry and Naghdi, 1956).  Based on non-uniform Ti-
moshenko beam and general time-dependent boundary con-
ditions, Lee and Lin (1998) examined the orthogonality cases 
for the Eigen functions of elastic boundary non-uniform beam 
for the dynamic analysis of structures.  Lin and Lee (2002) 
further investigated the vibration effect of a pre-twisted 
non-uniform Timoshenko beam with time-dependent elastic 
boundary conditions.  On the other hand, Kim (2016) pro-
posed a procedure of analytical solution for solving the dy-
namic response of Timoshenko beam excited by support mo-
tions, and with the introduction of Eigen function expansion 
and Mindlin-Goodman method.  Subsequently, Pratiher (2012) 
studied in detail the use of perturbation method for vibration 
control of cantilever beam with tip mass under transverse base 
excitation.  A closed-form solution derived by Elishakoff and 
Livshits (1984a,1984b) was based on both the Bernoulli-Euler 
and Bresse-Timoshenko beam under stationary random exci-
tation.  However, their study eventually led to the development 
of random vibration of Bresse-Timoshenko beam under con-
centrated point load and subjected to space wise white noise 
(Elishakoff and Lubliner, 1985; Elishakoff and Lubliner, 
1988).  Despite of several research based on Timoshenko 
beam theory, the research on the effect of axial load on the 
dynamic performance of structures, however, drew much 
attention in view of its wide application in the engineering 
industries ( Shaker, 1975; Bokaiant, 1990; Lee, 1995; Yesilce 
and Demirdag, 2008; Murin et al., 2013; Zhang et al., 2018; 
Zhang et al., 2019 ).  One of the examples was the work of 
Horr and Safi (2003) that was based on the exact Timoshenko 
pipe elements to determine the dynamic response of offshore 
platform in the frequency domain.  Tan et al. (2019) estab-
lished a nonlinear Timoshenko model of the coupled vibration 
of a pipe conveying fluid to distinguish it from the Eu-

ler-Bernoulli coupled model and the Timoshenko model of the 
transverse vibration in terms of application scope and accuracy. 
Nguyen and Oterkus (2019) developed a novel bond based 
Peridynamic model for three-dimensional complex beam 
structures with 6 degrees of freedom based on Timoshenko 
beam theory to predict damage in offshore structures. 

Theoretically the more comprehensive and more inclusive 
are the calculation models, the more accurate the computation 
results are to be expected.  However, in many practical engi-
neering, such as fixed offshore structures, the FE models of 
jacket structures are usually very complex.  It is unpractical to 
acquire all the detailed information for setting up the finite 
element information in the preliminary design stage.  There-
fore, despite the reported revised models and computational 
methods, the current engineering practice still prefers simpli-
fied structural calculation model in which a reasonable degree 
of precisions could be achieved, especially in the preliminary 
design stage. 

This paper presented a simplified method based on Timo-
shenko beam theory to assess the dynamic response of off-
shore jacket platforms under random wave loads.  The jacket 
platform was simplified as an axially loaded non-uniform 
cantilever beam for structural analysis.  In the study, the 
pseudo-excitation method (PEM) was combined with Ritz 
method to determine the dynamic behaviour of jacket platform 
in response to random wave loads.  The assessment was based 
on the power spectral densities, variances of response and 
higher spectral moments, but without generating the normal 
mode shapes of vibration.  An example of analytical procedure 
and the accuracy of the proposed approach was then verified 
against the finite element (FE) method for discussion.  

In the paper, the proposed method to determine the Pseudo 
wave force and the solution of partial differential equation are 
presented in Sections 2 and 3 respectively.  A comparison of 
analytical results on the dynamic behaviour of offshore jacket 
platform between the proposed simplified approach and the 
FE method is discussed in Section 4.  Finally, a conclusion of 
the study based on the analysis results is summarised in Sec-
tion 5. 

II.  PSEUDO WAVE FORCE BY 
PSEUDO-EXCITATION METHOD (PEM) 

The Pierson-Moskowitz (PM) wave spectrum were widely 
referenced for the design and analysis of offshore platforms in 
open sea environment.  In the PM spectrum, the wave force 
spectrum at z height could be presented as follows (Yu and Liu, 
2011). 

( )

( )
( )

( )
( )

( )

22
2

D 1/3 2

2
2 2

M 2

cosh kz1 K H
sinh kd2

cosh kz
[K ]

sinh kd

pS Sηω

  
 ω 
 π  = ω 
 

+ ω 
 

 (1) 



160 Journal of Marine Science and Technology, Vol. 28, No. 3 (2020) 

where / 2D w DK C Dρ=  , and 2 / 4M w MK C Dρ π= .  Here, wρ  is the density of water, D is the diameter of cylindrical cylinder, 

DC  is the drag coefficient, MC  is the inertia coefficient, 2 /k L= π , 2 / Tω = π , H is the wave height, L is the wave length, T 
is the wave period,and 1 3H  is the significant height.  The pseudo wave load was determined in accordance to pseu-
do-excitation method (PEM) (Lin and Zhang, 2004). 
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From the above, several derivatives of ( )p ,z t  could be derived as shown. 
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III.  SOLUTION OF PROPOSED EQUATION FOR ANALYSIS 
For an axially loaded cantilever Timoshenko beam, the partial differential equation that governed the beam bending motion 

w(z,t) could be expressed as follows. 
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Where EI(z) and ρA(z) were the flexural rigidity of cantilever beam and its mass per unit height, varied with position z.  p(z,t) 
was the wave force varying with position and time that caused the beam motion that could be described by transverse dis-
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placement w(z,t).  The boundary condition at each end of the cantilever beam was set as follows. 
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By rearranging equation Eq. (7), 
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The initial condition of the beam under static could be set at, 
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Substituting equations Eqs. (2), (4) and (6) into Eq. (9), 
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In accordance to the Ritz method, the displacements of the beam structure could be taken as a linear combination of several 
shape vectors ( )j zϕ  as follows. 
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By substituting Eq. (12) into Eq. (11), and multiplying [ ]T∅   on the left side of the equation, 
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Integrating the position z of the beam from zero to L yielded the following formulation, 
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By rearranging the equation Eq. (14), 
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
′



−





( ) ( )

( ) ( )

2
M

3/2
2 2 2 2 2
D 1 M

3

K cosh kz
d

dz
1 K H cosh kz K sinh kd

2π

 
+ 















 


+ 



 (28) 

[ ] [ ] ( ) ( ) [ ] ( )
( )

( )
( )

2 2L L2 2
T T2 2 2

3 η D 1 M2 2
30 0

p z, t cosh kz cosh kzρI ρI 1P dz ω S ω K H ω K ω dz
k GA t k GA sinh kd sinh kd2π

   ∂
= ∅ = − ∅ +      ∂ ′   ′   (29) 
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Table 1. Expressions of [C], [E] and [D] under three types of damping 
Types of Damping [C] [E]  [D]  
Rayleigh damping [ ] [ ]α M β K+  [ ] [ ]2K ω M−  [ ] [ ]( )ω α M β K− +  

hysteretic damping [ ]iε K  [ ] [ ]2K ω M−  [ ]ε K−  

Non-proportional damping [C] [ ] [ ]2K ω M−  [ ]ω C−  

 
 
For Eqs (19), (20), (21), (23), (24), (25) and (26).  By in-

tegrating the equations by parts twice, and considering the 
boundary conditions of cantilever beam in equation Eq. (8) 
produced, 

 [ ] [ ] [ ] [ ] [ ]
L L

T T
2

0 0

`EIρ EIρM "dz dz
k G k G

= − ∅ ∅ = ∅
′ ′

∅ ′   (30) 

 [ ] [ ] [ ] [ ] [ ]
L L

T T
3

0 0

`ρIN ρINM "dz dz
k GA k GA

= ∅ ∅ = − ∅
′ ′

∅ ′   (31) 

 [ ] [ ] [ ] [ ] [ ]
L L

T T
4

0 0

`M ρI "dz ρI dz= − ∅ ∅ = ∅ ∅ ′   (32) 

 [ ] [ ] [ ] [ ] [ ]
L L

T T
2

0 0

`EIc EIcC dz dz
k GA k GA

′′ ′= − ∅ ∅ = ∅
′

∅
′   (33) 

 [ ] [ ] [ ] [ ] [ ]
L L

T IV T
1

0 0

K EI dz EI dz′′= ∅ ∅ = ∅ ∅   (34) 

 [ ] [ ] [ ] [ ] [ ]
L L

T T
2

0 0

K N dz N dz′′ ′ ′= ∅ ∅ = − ∅ ∅   (35) 

 [ ] [ ] [ ] [ ] [ ]
L L

T IV T
3

0 0

EIN EINK dz dz
k GA k GA

′′ ′′= − ∅ ∅ = − ∅ ∅
′ ′  (36) 

Substituting equations from (30) to (36) into Eq. (15). 
Considering the following, 

 [ ] [ ] [ ] [ ] [ ]1 2 3 4M M M M M= + + +  (37) 

 [ ] [ ] [ ]1 2C C C= +  (38) 

 [ ] [ ] ] [1 2 3K K K K = + +   (39) 

 [ ] [ ] [ ] [ ]1 2 3P P P P= + +  (40) 

Then by substituting equations from (37) to (40) into Eq. 
(15) yielded 

 
[ ]{ } [ ]{ } [ ]{ }

[ ]{ } [ ]{ } [ ]

IV III

iωt

R y S y M y

C y K y P e

+ +

+ + =

  

 
 (41) 

From the above, the right side was a harmonic excitation. 
The solution could be expressed in the form of, 

 ( ){ } { } { }( ) iωt
r iy t y i y e= +    (42) 

Thus, 

 ( ){ } { } { }( ) iωt
r iy t iω y i y e= +   (43) 

 ( ){ } { } { }( )2 iωt
r iy t ω y i y e= − +    (44) 

 { } { } { }( )III 3 iωt
r iy iω y i y e= − +    (45) 

 { } { } { }( )IV 4 iωt
r iy ω y i y e= +    (46) 

By substituting equations from (43) to (46) into Eq. 
(41) produced the following. 

 

[ ] { } { }( ) [ ] { } { }( )
[ ] { } { }( ) [ ] { } { }( )

[ ] { } { }( ) [ ]

4 iωt 3 iωt
r i r i

2 iωt iωt
r i r i

iωt iωt
r i

ω R y i y e iω S y i y e

ω M y i y e iω C y i y e

K y i y e P e

+ − +

− + + +

+ + =

   

   

 

 (47) 

Where r and i denoted the real and imaginary part respec-
tively.  By eliminating i te ω  at both sides of the equation, and 
comparing the real and imaginary part, 

 [ ]{ } [ ]{ } { }r iE y D y P+ =   (48) 

 [ ]{ } [ ]{ } { }r iD y E y 0− + =   (49) 

Where, 

 [ ] [ ] [ ] [ ]4 2E ω R ω M K= − +  (50) 

 [ ] [ ] [ ]3D ω S ω C= −  (51) 
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Fig. 1  FE model of offshore jacket platform Fig. 2  Fundamental natural frequency of offshore jacket platform 
 
 
The expressions of [C], [E] and [D] under three (3) types of 

damping are presented in Table 1. 
The following two (2) expressions could be obtained by 

solving { ry } and { iy }. 

 { } [ ] [ ] [ ] [ ]( ) [ ] { }
11 1 1

ry D E E D D P
−− − −= +  (52) 

 { } [ ] [ ] [ ] [ ]( ) [ ] { }
11 1 1

iy D E E D E P
−− − −= +  (53) 

The displacement { u } could be determined from the 
equations Eqs (42) and (12).  The PSD of displacement and 
bending moment could therefore be obtained as, 

 ( ) ( ) ( ) ( ) 22
uu MMS z,ω u z, t , S z,ω M z, t= =   (54) 

Considering, 

{ } { } [ ]

T
r1 i1 1

r2 i2 2
r in 1 n 1 1 n

rn in nn 1 n 1 1 n

y y
y y

y y
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M M M× × ×

× × ×

∅     
     ∅     = = ∅ =
     
     ∅     

 ， ，  

Then, 
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y y
y y

u y L

y y

y iy y iy L y iy

( y y L y ) i( y y L y )

i

i

M

i

×

×

+

+
= ∅ = ∅ ∅ ∅ ×

+

= ∅ + + ∅ + + + ∅ +

= ∅ + ∅ + + ∅ + ∅ + ∅ + + ∅

 
 
 
 
 
 

 

(55)  

As, 

 
2

2
d uM EI
dz

=  

 
( ) ( )

( )

2
MM

" " " 2
1 r1 2 r2 n rn2 2

" " " 2
1 i1 2 i2 n in

S z,ω M z, t

( y y L y )
E I z

( y y L y )

=

 ∅ + ∅ + + ∅
=  

+ ∅ + ∅ + + ∅  

 (57) 

After the PSD of response ( )rS ω was determined, its 
spectral moments could be computed directly.  The zeroth and 
the second moments were the most useful terms. 

 2
0,r r r

0

λ σ 2 S (ω)dω
+∞

= =   (58) 

 2
2,r r

0

λ 2 ω S (ω)dω
+∞

=   (59) 

IV. EXAMPLE OF ANALYTICAL PROCEDURE 
In this section, a 3D model of 6-leg offshore jacket platform 

subjected to a wave spectrum was considered as a case study.  
The geometrical configuration of the jacket platform can be 
seen in Fig. 1.  The height of the platform was 68m.  It was 
located at 23 m water depth.  The overall horizontal dimension 
of the platform was 48m by 20m at the mud level, and 48m 
by14m at the top elevation.  The foundation of the jacket 
substructure was assumed fixed with a total of 6 groups of 
grouted piles through the jacket legs.  The inclination of the 
jacket legs was 10 to 1.  The jacket leg was tubular circular 
hollow section of diameter Ф1333mm and wall thickness 
19mm.  The geometrical properties of the 12 tubular members  
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Table 2. Element type and element number 
Element Type Area Element Beam Element Mass Element Node 
Element No. 35152 32806 2308 47420 

 
 

Table 3 Comparison of natural frequencies 
Mode 3-D FEM Model (Hz) Timoshenko beam model (Hz) 

1 0.73 0.75 

2 2.45 2.51 
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Fig. 3.  PSD of offshore jacket platform FE model and simplified beam model. 

 
 

at the bottom and the top were Ф762 × 16mm and Ф610 × 
13mm, respectively.  The mass of the three decks of the su-
perstructure, from the bottom to the top level, were 93 tons, 
267 tons and 1,231tons, respectively. 

The offshore jacket platform was modeled in accordance to 
the dimensional and geometrical properties as stated in the 
AS-BUILT drawings.  The entire platform was modeled as a 
plate-girder steel composite structure, while the deck and other 
platform components as shell elements.  The space frames of 
the jacket structure were modelled as beam elements.  The pile 
group effect between the adjacent legs of the jacket foundation 
was ignored, taking into consideration that the spacing be-
tween the jacket legs is 5 to 10 times the leg diameter.  How-
ever, the effect of additional mass of the joints of beam ele-
ments underwater was included.  The end of the piles was 
simulated as fixed at the seabed level.  A FE package ANSYS 
with capability to perform both static and dynamic analyses of 
offshore jacket platforms under wave loading was utilized for 
structural analysis.  The element type and element number 
were tabulated in Table 2. 

The 3D offshore jacket platform model was simpl-ified as a 
cantilever beam model based on Timoshenko beam theory.  
The inertia moment and the steel density were taken as 

5( 5) zI z = −  (see ref. [6]) and ρ =7800 kg/m3, respectively.  
The sectional mass per unit height, taking account the effect of 
water, was ( )A zρ  =15545-91z (see ref. [6]).  A total of 1,591 

tons topside load was applied at the top end of the cantilever 
beam. 

An Eigenvalue analysis was performed and the natural 
frequencies of the simplified model were determined (refer to 
Fig. 2 for the first order natural frequency).  The natural fre-
quencies of the 3D FE model and the simplified model for the 
first 2 modes is presented in Table3.  A comparison of the 
natural frequencies between the 2 models showed that the 
difference of results was small.  It could therefore be com-
mented that the simplified model could actually be used in the 
preliminary design to assess the dynamic response of offshore 
jacket platforms. 

To further justify the use of Timoshenko beam model for 
offshore jacket platforms, the P-M wave spectrum was applied.  
The significant wave height and the wave period were taken as 
5.63m (after conversion) and 19.5av =16.24 m/s, respectively.  

A q-dimensional Ritz vector defined asR1(q) = [η2, η3,….., 
ηq+1,] which /z Lη = , was considered.  It was clearly noted 
that the elements in the Ritz vector were linearly independent 
and satisfied the geometrical boundary conditions.  From the 
calculation, the parameters were determined as 0.05ε =  and 

3q = . 

The PSD of the displacement at the top and that of the 
bending moment at the mud line of the offshore jacket plat-
form can be seen in Fig. 3.  In the figure, the green line was the  
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Table4. Several spectral moments generated from the 2 models. 

Item 
jacket-top displacement 

(m2s) bending moment of jacket at mud line (N2m2s) 

Simplified method FEM Simplified Method FEM 
2
rσ  7.20e-10 7.23e-10 2.16e11 2.20e11 

2,rλ  7.53e-10 7.60e-10 1.98e11 2.01e11 

 
 

results generated from the FE model, while the black line was 
the results from the proposed simplified method.  The corre-
sponding variances 2

rσ  and second spectral moments 2,rλ  of 
the FE model and the proposed simplified model are presented 
in Table4. 

The PSD results in Fig. 3 showed that the maximum values 
of displacement at the top elevation of offshore jacket platform 
generated by the FE model and the proposed simplified model 
were 1.89x10-9 m2s (at 0.52 rad/s) and 1.87x10-9 m2s (at 0.51 
rad/s), respectively.  Similarly, the PSD results showed that the 
maximum values of bending moment at the mud line of off-
shore jacket platform generated by the FE model and the 
proposed simplified model were 5.45x1011 N2m2s (at 0.52 
rad/s), and 5.43x1011 N2m2s (at 0.51 rad/s), respectively. 

A comparison of results in Fig. 3 indicated that the maxi-
mum PSD and the corresponding frequency of the simplified 
model was slightly lower than those of the FE model.  The 
curves plotted for the FE model and the simplified model were 
almost identical, and having the same peak value.  It could 
therefore be concluded that the simplified model could actu-
ally provide an assessment on the dynamic response of off-
shore jacket platforms in the preliminary design stage. 
A comparison of spectral moments as shown in Table 4 re-
vealed that the results of the simplified model agreed very well 
with that of the FE model.  This indicated that the prediction of 
spectral moment by the simplified model was quite similar to 
that by the FE model.  However, considering the complexity of 
the structural behavior of offshore jacket platform in response 
to waves, the proposed simplified model presented in this 
paper could only be utilized as an analytical tool to predict the 
dynamic performance of offshore jacket platforms. 

V. CONCLUDING REMARKS 
From the comparison of power spectral densities (PSDs), 

variances and second spectral moments of an offshore jacket 
platform between the simplified model and the FE model, it 
can be concluded that, 

(1) The simplified model predicts the dynamic response of 
jacket platform under random wave is as accurate as the FE 
model in the frequency domain. 

(2) The assessment with the combined pseudo-excitation 
and classical Ritz method provides accurate and efficient 
solutions to determine the dynamic response of offshore jacket 
platform, without a need to generate the normal mode shapes 
of structure.  This approach of analysis would have computa-

tional advantage and could be very useful for analyzing com-
plex structures in the frequency domain. 
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