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ABSTRACT 

This paper presents a theoretical investigation of nonlinear 
surface-wave propagation over a sloping bottom. For a prob-
lem with nonlinear surface-wave propagation over a sloping 
bottom, a perturbation method is first used to find the analyt-
ical solution in order to derive the third order terms for the 
bottom slope  and the wave steepness  in the Eulerian 
system. Then, by transforming the flow field solution from the 
Eulerian system into the Lagrangian system, a more accurate 
wave profile is identified. By using the kinematic stability 
parameter, new theoretical breaking-wave characteristics are 
derived. The theoretical solutions are then compared with 
those from other research. The results reveal that the present 
solution reasonably describes the wave-breaking phenomenon. 
In this paper, a new theoretical solution for the breaking-wave 
characteristics is provided, and it is a useful approach for 
predicting breaking-wave characteristics.  

I. INTRODUCTION 

Because of changes in water depth, a wave touches the 
bottom when the depth is shorter than half of its wavelength, 
and the wave shoals when travelling from deep water to 
shallow water. The wave height increases, and the wave pro-
file becomes more skewed and asymmetric (Elgar and Guza, 
1985) owing to the nonlinear effects. The celerity is reduced; 
hence, the fluid particle velocity of the wave crest is faster than 
the celerity, and the wave breaks. A breaking wave releases 
enormous energy and substantial impact force, which damages 
coastal structures such as breakwaters and causes sediment 
transport along and across nearby shores. Therefore, break-

ing-wave characteristics must be quantified to obtain reliable 
predictions about sediment transport and structural design in 
coastal regions. Most investigators have discussed and in-
ducted formulae from experimental studies. For example, 
Street and Camfield (1966), Tang (1966), L'e M'ehaut'e and 
Koh (1967), Galvin (1968), Goda (1970, 2004), Saeki et al. 
(1971), Sunamura and Horikawa (1974), Sunamura (1980, 
1983), Ogwa and Shuto (1984), Seyama and Kimura (1988), 
Hansen (1990), and Rattanapitikon and Shibayama (2000) 
have all proposed empirical formulae or semiempirical for-
mulae for breaking-wave height and breaking-wave depth as a 
function of deep-water wave height, wave steepness, and 
bottom slope, in accordance with experiments or reliable field 
data. Chang (1999), Gotoh and Sakai (1999), and Hsieh et al. 
(2007, 2008) have studied breaking-wave characteristics by 
means of numerical simulation, and Deo et al. (2003) studied 
the same topic by means of neural networks and experimental 
results. Iwagaki et al. (1974), Chanson and Lee (1997), Ting et 
al. (2002), Tsai et al. (2005), and Hsiao et al. (2008) have used 
experimental data to examine some empirical formulae and 
characteristics related to breaking waves. The major drawback 
for all of the aforementioned studies has been that they could 
only derive the breaking-wave height or breaking-wave depth 
and the location of a wave when breaking; however, these 
studies have not been able to completely describe the process 
of the wave deformation and of the related flow field.  

Biesel (1952) suggested a plausible approximation method 
to account for normal incident waves propagating on a sloping 
bottom, with the bottom slope taken into account in the ve-
locity potential as a perturbation parameter, but wave breaking 
and nonlinear effects are not addressed in that study. Fur-
thermore, Biesel did not explain the derivation of the formula 
in detail. Keller (1958), Chen and Tang (1992), Hsu et al. 
(2001), and Chen et al. (2005, 2006) have extended Biesel’s 
theory. 

In this study, a nonlinear analysis was undertaken by per-
turbing to the third order of the bottom slope   or the wave 
steepness   in an Eulerian system. Then, the profile of the 
breaking wave was determined using a transformation into a 
Lagrangian system. The breaking-wave height and the 
breaking wave depth can be derived using kinematic stability  

Paper submitted 10/23/18; revised 12/03/18; accepted 03/15/19. Corre-
sponding Author: Chia-Yan Cheng( E-Mail: cycheng@narlabs.org.tw) 
1 Department of Civil Engineering and Geomatics, Cheng Shiu University 
2Taiwan Ocean Research Institute, National Applied Research Laboratories 
 



150 Journal of Marine Science and Technology, Vol. 28, No. 3 (2020) 

b

b

 
Fig. l.  Sketch definition for a surface wave propagating on a gently sloping bottom. 

 
 

parameters. Finally, the theoretical solutions were verified by 
comparing them with those from other studies, as shown in Fig. 
3 to Fig. 5. 

II.  MATHEMATICAL FORMULATION 

To describe a surface wave propagating toward a gently and 
uniformly sloping bottom, a two-dimensional Cartesian x y  
coordinate system is used, as shown in Fig. l. The negative 
x-axis is directed outward to the sea, and the positive y-axis 
extends vertically upward from the still water level; the bot-
tom, or the seabed, is at y h x    , where   denotes 
the bottom slope (Li et al., 2013). 

In Fig. 1, angle  is the incline of the bottom, 

( tan )   is the bottom slope, ( , )x t is the elevation of 

the water’s surface, C is celerity, ( )h x is water depth, bH is 

breaking-wave height, and
bh is breaking-wave depth.  

Assume that the flow field is irrotational, incompressible, 
and inviscid. The governing equations and boundary condi-
tions can be derived to the third order of the bottom slope   

or of the wave steepness ( / )o oH L  , where oH is the wave 

height and oL is the wavelength of a deep-water wave or an 

incident wave. To describe the irrotational motion of an in-
viscid and incompressible fluid, a velocity poten-
tial ( , , )x y t is introduced, and the horizontal and vertical 

velocities are given by 

 , , .u v V ui vj
x y

  
   
 

  
 (1) 

The velocity potential ( , , )x y t is harmonic with respect 
to x and y and satisfies the continuity equation. This leads to 
the Laplace equation  

 
2 2

2
2 2

0
x y

   
   

 
 (2) 

The wave motion described must satisfy boundary condi-
tions at the bottom and at the free surface, respectively, as 
follows:  

1. On an immovable and impermeable sloping bottom with 

an incline   to the horizon, the bathymetry is repre-
sented by ( , ) 0f x y y h y x     , and the no-flux 
bottom boundary condition gives  

2
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 0, y h
y x

  
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. (3) 

2. The dynamic and kinematic free-surface boundary con-
ditions are  

 2( ) 2 0,t g y          (4) 

 ,y d dt y     (5) 

Taking the total differential D/Dt of Equation (4) and using 
Equation (5) gives 

 2 2[( ) ] ( ) / 2 0,tt y tg y              (6) 

3. A time-averaged mass flux conservation condition is 
required: The water mass bounded by the shoreline cre-
ated by the sloping bottom rushes up and down the beach 
face, and the total mass does not change. Therefore, at 
any cross-section where x is a constant, the 
time-averaged mass flux should vanish. This condition 
gives 

 
0

1
:  

( ) ( ) 0,

T
yh

y y y hh

y direction dydt
T

dy








  



 

  

  

 (7) 

 
0 0 0

0
.

1 ( )
: 

0, 0
( ) 0 ; ( )

1, 0

cT T c
x xh h

c
c

h h

U
x direction dydt dydt

T T

udy U u dy U

 

 


 


 



 

 

    


    







 (8) 



 W.-J. Tseng. et al.: Nonlinear Breaking-wave in Lagrangian Coordinates 151 

Both the superscript c and the sub script 0 express the 
physical quantity at infinite depth. Because of the nonlinear 
effect, waves over constant depth induce a net flux of water. In 
Equation (8), a deep-water streaming term is introduced that is 
adjusted by a unit function ( )U   to ensure that it can be re-
duced to the deep-water condition when the bottom slope is 
equal to zero. 
     For a gentle bottom slope , Equations (2) to (8) can be 
solved order by order in the following section. 

III. ASYMPTOTIC SOLUTIONS 

In this section, an explicit expression for the velocity po-
tential of the wave field is first derived as a function of the 
bottom slope  and of the wave steepness  to the third order 
in an Eulerian coordinate system. Then, the wave profile and 
the velocity components are transformed into a Lagrangian 
system. Finally, in the next section, the kinematic stability 
parameter is introduced and theoretical breaking-wave char-
acteristics derived. The detailed computation is as follows:  

First, the Laplace equation, Equation (2), and the corre-
sponding boundary conditions, Equation (3) to (8), are used to 
obtain the asymptotic solutions. This study assumes that the 
relevant physical quantities can be expanded as a double 
power series of the parameter  and the bottom slope . Thus, 
the velocity potential , the free-surface displacement , the 
wave number k, and the angular frequency  can be obtained 
as follows: 
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where S is the phase function, 0x  denotes the x  value at 

infinite depth, je  is the wave amplitude influence factor, and 

, ,0m nM  is the return flow. The bottom slope   is assumed to 

be small; thus, the qth differentiations of ,r lk , , ,m n iA , and 

, ,0m nM with respect to x are of order q : 

 , , , , ,0( , , , ) ( )
qq q q

jr l m n i m n q
q q q q

d ed k A d M
O

dx dx x dx






  (13) 

Substituting Equations (9) to (13) into the governing equa-
tion and the boundary conditions (2) to (8), using the Taylor 
series expansion of functions at 0y   instead of y  , and 

collecting terms of the same order of   and   yields the 

required equations to each order of approximation. Then dif-
ferent orders of ( )m , ( )n , and harmonic ( )i  may be 

separated, yielding a set of partial differential equations for 
each index ( , , )m n i . The boundary-value problems can be 

solved sequentially for orders of m, n, and i. The solution is as 
follows, where the notation shown is used for convenience: 

 cosh ch, sinh sh, tanh th; cothI h      (14) 

The solutions are obtained as follows: 
For O( 2 ), the solution for velocity potential function  

and the corresponding free-surface displacement  can be 
obtained from the boundary-value problem with correspond-
ing order terms. The results are  
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Fig. 2.     Comparison of wave profiles with Lagrangian and Eulerian coordinates. 
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In Equations (15) to (18), 
0

2
T

    is the angular 

frequency, T is the wave period, and 0a  is the wave amplitude 

in deep water. 

IV. BREAKING WAVES 

1. Wave deformation   
As a wave reaches its limit, the crest is fully developed as 

a summit and becomes highly asymmetrical. This asymmet-
ric wave profile can be described by a Lagrangian coordi-
nate system but cannot be captured by Eulerian solutions. 
Hence, the motion described in the Lagrangian system is 
close to that observed in reality (Chen et al., 2004).  

The Eulerian and Lagrangian wave profile prior to 
breaking as a wave propagating over a gently sloping bot-

tom (0 1 /10)  is illustrated in Fig. 2.  

According to the velocity potential given in the previous 
section, the horizontal and vertical Eulerian velocity 
components, eu x    and ev y   , of a fluid 

particle can be derived. As a wave shoals, the wave form 
becomes asymmetric, and the particle motion can be ob-
tained by the transformation between Eulerian and La-
grangian coordinates. The Lagrangian velocity may be 
estimated from the Eulerian velocity (Chen et al., 2006) 
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Then, the displacement components X and Y of the fluid 
particle with initial average position ( , )x y are obtained by 
direct integration as 
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Substituting y = 0 into Equations (21) and (22), the dis-
placement of a water particle on the free surface   (x-direction) 
and   (y-direction) can be given as 
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where ( , )  is the position of the fluid particle on the free 

surface (y = 0). 
In the above expressions, 1 0C , 10S , 20C , 20S , 30C , 

and 30S are deduced from 1C , 1S , 2C , 2S , 3C , and 3S  

given in Equations (23) and (24), with the substitution y = 0, 
where the subscript 0 represents the free surface.  

2. Breaker characteristics  

The increase in wave height owing to the shoaling effect 
becomes depth-limited as the wave propagates into shallow 
waters.  The celerity is reduced; the particle velocity of the 
wave crest is faster than the wave celerity, and the wave breaks.  
To describe the breaking-wave mechanism, the kinematic 
stability parameter ( . . .)K S P is applied, and the breaking-wave 
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criterion is 
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C
   (25) 

where C is wave celerity and 0bu is the horizontal velocity of 

the particle at the wave crest. 
In accordance with Equation (18), the breaking amplitude 

parameters ba  may be written as 
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where bL is the wavelength, bk is the wave number, bC  is the 

celerity of the breaking wave, and bh is the breaking-wave 

depth, respectively.  
The Lagrangian horizontal velocities lu  evaluated at y = 0 

can be simplified as 
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The breaker condition is defined by taking the extreme 
value of the horizontal velocity 
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The phase angle of the breaking wave Sb can be solved, and 
this condition also implies that the water surface eleva-
tion  has an extreme value. 

The resulting Lagrangian horizontal velocity of the break-
ing wave on the free surface, based on Eq. (28), is denoted 
as 0( )l bu : 
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10 bC , 20 bC , 30bC , 1 0 bS , 20 bS , 30 bS , and bk  are deduced 

from 1 0C , 2 0C , 3 0C , 10S , 2 0S , 30S , and k , with the sub-

stitution ba a , bD D , bk k , and bh h , where the 

subscript b represents the breaking wave. 
Thus, the breaking-wave criterion can be rewritten in the 

more specific form 
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This criterion, after substituting the previous Lagrangian 
velocity, becomes 
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By utilizing Equations (27), (29), and (32), we can solve 
,b bh k , and bS . The maximum surface elevation m ax , 

which appears when a wave breaks, is given by 
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Fig. 5.  Relationship between 0bH H and 0 0H L for 1/ 50.   Fig. 6.  Relationship between 0bh H and 0 0H L  for 1/ 20  . 

 
 
Similarly, we can solve the minimum elevation of break-

ing-wave depth min , and the breaking-wave height bH  is 

then derived as 

 m ax m in m in( ) ( )b bH         (34) 

where m a xb  . 

V.  THEORY VALIDATION AND DISCUSSION 

Many factors influence wave breaking, including wave 

steepness, wave height, and bottom slope.  The breaking 
phenomenon is so complicated that most related studies have 
described breaking-wave characteristics only from experi-
mental studies and empirical or semiempirical formulae cali-
brated from laboratory data.  However, this paper presents a 
theoretical investigation of nonlinear surface-wave propaga-
tion over a sloping bottom and compares the results of the 
present theory with previously published results (Fig. 3 to Fig. 
8). 

Fig. 3 to Fig. 5 demonstrate that b bH h  decreases as 0bh L  

increases and that 0/bH H  decreases as 0 0/H L  increases.  Fig. 
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3 shows that the present analytical solutions follow the same 
trend that other research results do.  Fig. 4 to Fig. 8 also 
demonstrate that the theoretical modeling results follow the 
same trend that experimental measurements in other studies 
have. 

VI.  CONCLUSIONS 

This paper provides an analytical solution for breaker 
characteristics.  The solution has not been appropriately ad-
dressed in other studies.  The present theoretical solutions are 
compared with the results of other scholars, as shown in Fig. 3 
to Fig. 5.  They also show that the present analytical solutions 
follow the same trend that previously published results have. 
The main outcomes of this study are as follows: 

1. This paper provides a theoretical solution for a wave 
propagating over a uniformly sloping bottom, from deep 
water to shallow water, until the wave breaks.  The the-
oretical results of this study reveal characteristics of 
breaking waves that have not been described in other 
studies.  

2. The respective theoretical modeling requires only 
knowledge of the incident wave conditions and of the 
bottom slope for breaking-wave characteristics to be 
obtained. 
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