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ABSTRACT 

This work presents a numerical study on the vortex-induced 
vibration (VIV) phenomenon of synchronization of a vertical, 
flexible, circular cylinder with a length-to-diameter ratio of 
475, being free to move along the in-line (IL) and cross-flow 
(CF) directions for Reynolds numbers of 42K, 84K and 126K.  
It is found that the dominant mode numbers, the maximum 
root mean square amplitudes, the dominant frequencies and 
the lift coefficient increase with the Reynolds number, but the 
drag coefficient decreases.  The in-line response shows a main 
frequency component at twice the cross-flow frequency.  At 
some Reynolds number value and riser span location, a third 
harmonic frequency component is observed in the CF re-
sponse. 

The aims of this paper are to study the lock-in phenomenon 
and the effect of the flow-induced tension in the riser fre-
quency spectrum.  The lock-in analysis shows that when both 
the cross-flow riser movement and the velocity transversal 
component frequency values are the same, lock-in takes place.  
The lock-in is established at the vibration mode predominant 
frequency for the three Reynolds numbers. 

The results show also that, taking into account the tension 
produced by the flow, the vibration frequency spectrum will be 
calculated accurately.  The drag force produces a flow-induced 
tension that makes the riser behave as a tension-dominated 
riser, even if the riser was not pre-tensioned. 

I. INTRODUCTION 

Vortex-induced vibration (VIV) of slender structures is of 
practical interest in many fields of engineering.  VIV often 
causes fatigue of onshore and offshore structures, such as 
risers, mooring lines, tension legs, etc.  Detailed understanding 
of this fluid-structure interaction (FSI) phenomenon, as well 
as an efficient prediction of such self-excited and 
self-sustained oscillations, are required for the reliable esti-
mation of the fatigue damage and the development of VIV 
suppression techniques (Bourghet et al., 2011a, 2013). 

VIV has been extensively studied.  Comprehensive, 
state-of-the-art reviews were published by Sarpkaya (1979), 
Bearman (1984), Williamson and Govardhan (2004), Gabbai 
and Benaroya (2005), Bearman (2011) and Wu et al. (2012). 
As these types of structures often have a length-to-diameter 
ratio (L/D) of the order of 102 – 103 (Meneguini et al., 2004; 
Chaplin et al., 2005; Resvanis et al., 2012), several experi-
ments have been carried out on deepwater risers with large 
L/D (Tognarelli et al., 2004; Chaplin et al., 2005; Trim et al., 
2005; Lie and Kaasen, 2006; Vandiver et al., 2006; Tognarelli 
et al., 2008; Vandiver et al., 2009; Huang et al., 2011b; 
Resvanis et al., 2012; Gu et al., 2013; Gao et al., 2015).  These 
experiments investigated flexible riser’s VIV response under 
different flow conditions, and some also addressed the effec-
tiveness of VIV suppression techniques, such as using helical 
strakes.  These are all the tests recently used as validation 
source for the numerical studies.  

Our experimental investigations were carried out at dif-
ferent towing tanks having their own limitations in terms of 
riser length and carriage velocity maximum speed.  To avoid 
length limitation, Chaplin et al. (2005) located an important 
part of the riser inside a tube at vacuum conditions that moved 
with the carriage, with this part of the riser having zero ve-
locity.  This type of velocity profile is named as stepped, and in 
this case had a non-zero velocity in its lower 5.9 m: the towing 
tank’s depth.  The maximum Reynolds number achieved was 
approximately 28K.  

Trim et al. (2005) investigated a 38 m long, 27 mm diameter 
riser fixed in a horizontal facility that was set in a longitudinal 
towing tank to investigate uniform flow response, and in a 
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Table 1.  Nomenclature of used variables. 

Nomenclature 

Axrms/D, Ayrms/S Dimensionless in-line and cross-flow root mean square ampli-
tudes 

IL Acronym of in-Line (flow 
direction) 

/ , /max max
xrms yrmsA D A D  Dimensionless maximum root means square amplitudes  2/ 4m m D   Mass ratio 

C Structural damping N Mode number 

CD Drag coefficient R Riser radius (in m) 

CF Acronym of Cross Flow (direction perpendicular to flow). Re Reynolds number 

CL Lift coefficient S Surface 

cm Added mass constant St Strouhal Number 

D Riser outer diameter  (in m) T Instant time 

E Young Modulus T Tension 

EI Flexural rigidity (product of Young modulus and inertia moment) V Uniform flow velocity 

F Force X In-line displacement 

fn Natural frequency of the oscillating mode (in Hz) xmean Mean in-line displacement 

fn,beam .nth natural frequency for a non-tensioned beam (in Hz) Y cross-flow displacement 

fn,string .nth natural frequency  for a tensioned string (in Hz)  Strain 

I Inertia moment  Stress 

K Wavenumber  Water density 

L Riser length (in m)  Water kinematic viscosity 

M Mass c, b Cable and beam phase 
velocities. 

ma Added mass   

 
 

rotating towing tank to investigate sheared flow response.  
Riser behavior differences in uniform and sheared flows were 
investigated, and reached Reynolds numbers near 65K. 

Lie and Kaasen (2006) investigated a much longer riser, up 
to 90 m, by using a special facility off the coast of Norway 
near Bergen.  The installation consists of a 180 m long floating 
quay at 97 m sea depth.  The riser model was attached to a 
floating vessel that was moved along the quay side by a rope 
and engine system.  The other riser´s extreme was fixed at the 
sea bottom.  By moving the vessel at constant velocity, the 
riser was exposed to a triangular current velocity profile or 
sheared flow.  The maximum Reynolds number was approx-
imately 35K.  The effect of very high riser length to diameter 
ratios was analyzed.  

Tognarelli et al. (2008) used a 10 m long riser located in a 
rotating rig facility, and perpendicular to rotating facility axis.  
Hence, the riser local span velocity increases linearly with its 
distance to the rotating axis, producing a so-called sheared 
flow.  The tests analyzed the effect of a non-uniform velocity 
on the riser´s behavior.  The maximum Reynolds number was 
near 70K. 

Resvanis et al. (2012) also investigated the 38 m long riser 
in the same installation as Trim et al. (2005), but with three 
different riser diameters: currently 12, 30 and 80 mm.  This 
last riser diameter was achieved by surrounding the 30 mm 
riser with a 25 mm thick plastic shell.  Reynolds numbers 
ranged from 42K to 126K for uniform flows.  Correlations of 
in-Line (IL), and cross-flow (CF), oscillation amplitudes as 

functions of Reynolds numbers reaching the highest Reynolds 
number range in towing tank tests were obtained. 

Better understanding of some important VIV aspects (i.e. 
response amplitude, dominant mode, dominant frequency, 
fatigue damage, etc.) were obtained from the above mentioned 
experimental works.  Furthermore, they provided the bench-
marks for verifying numerical prediction models.  Neverthe-
less, in all of these experimental works the Reynolds numbers 
yielded in the low Reynolds number range due to the test 
facilities´ limitations.  But, according to Trim et al. (2005): 
“For a full-scale riser diameter of (say) 0.5 m and ocean cur-
rents up to 2 m/s, Reynolds numbers approaching the millions 
may apply, embracing three flow regimes: subcritical, critical 
and supercritical”.  This makes analyzing high Reynolds VIV 
an important task.  

The most important phenomena of VIV at high Reynolds 
are that both the forces and the oscillation amplitudes expe-
rienced by the riser will be larger (Resvanis et al., 2012), and 
hence, also tensions and reactions at their extremes.  These are 
basic parameters for riser design.  On the other hand, the 
vortex shedding also varies with the Reynolds number.  The 
accurate determination of the vortex shedding frequency 
spectrum for high Reynolds numbers is required, as it will be 
compared to the riser structure frequency spectrum to check 
the occurrence of lock-in, the most dangerous condition to 
produce riser damage by fatigue.  The lock-in phenomenon 
occurs when both vortex shedding and structure frequency 
values are equal.  Finally, the structure frequency spectrum 
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depends on riser tension which, at the same time, depends on 
the forces produced by the flow upon the cylinder.  In this way, 
the structure frequency value will also vary for high Reynolds 
numbers. 

Besides the experimental investigations, the other research 
methodology on flexible cylinders’ VIV has been Computa-
tional Fluid Dynamics (CFD).  As will be observed next, all of 
them have concentrated again into low Reynolds numbers. 

Newman and Karniadakis (1997) carried out VIV a simu-
lation of an infinitely long flexible cable at Re = 100 and Re = 
200 with a spectral/hp element method.  Both the standing 
wave and the traveling wave responses were realized.  It was 
found that the interwoven pattern of vorticity was associated 
with a standing wave cable response.  

Holmes et al. (2006) and Menter et al. (2006) introduced 
commercial software codes to analyze VIV.  They used two 
different approaches to investigate riser VIV: the fully 3D 
Finite Element Method (FEM) and the Finite Volume Method 
(FVM).  Both simulations used relatively coarse meshes with 
high element aspect ratios, and their results for vibration 
modes and maximum oscillation amplitudes were in good 
agreement with the experimental data by Trim et al. (2005) 
and Chaplin et al. (2005). 

Bourghet et al. (2011a, 2011b, 2012, 2013 and 2015) did a 
series of fundamental studies on the VIV of flexible cylinders.  
Their research revealed some important flexible cylinder VIV 
mechanisms such as the occurrence of lock-in, the orbital 
trajectories which dominate the wake-body resonance, the 
phasing mechanisms between the IL and CF VIV and the 
validity of the independence principle (IP) applied to VIV. 

Lothode et al. (2015) analyzed a 1 m diameter 2D fixed 
cylinder at Reynolds numbers 43K and 71K and the riser of 
the Chaplin et al. (2005) tests at Reynolds number 4.5K.  They 
obtain good accuracy in the vibration mode shape and ac-
ceptable accuracy in the amplitudes.  

Xiao and Wang (2016) simulated combined IL and CF VIV 
of a 9.53 m long vertical riser in uniform and linearly sheared 
currents using a fully 3D CFD approach.  The Reynolds 
numbers are approximately 2K and 4K.  Oscillation envelopes 
and amplitudes were in good agreement with the test results. 

Nevertheless, fully 3D FSI simulations of VIV of a vertical 
riser subjected to various flow conditions are still quite lim-
ited.  Past studies found that the dominant modes were related 
to the incoming flow velocity profile (Huang et al., 2011a), 
and the IL VIV should not be neglected in deepwater riser 
design (Tognarelli et al., 2004; Xue et al., 2015).  

The aim of this work is to analyze much higher Reynolds 
numbers, in the range of 42K to 126K.  To do so, a riser with 
similar length to diameter ratios, Young modulus, mass ratio 
and inertia moment to those found in the bibliography has 
been chosen.  This riser will be immersed in flows of three 
different velocity values: values that produce Reynolds num-
bers of 42K, 84K and 126K.  From each case the envelopes, 
the oscillation time histories and the oscillation frequencies in 
both the In-Line (IL) and Cross-Flow (CF) directions will be 

analyzed.  The appearance of synchronization, or lock-in, will 
be analyzed.  Orbital trajectories will be found.  Finally, how 
accurately riser frequency spectra can be calculated will be 
assessed, taking into account the tension produced by flow 
induced riser deformation. 

II.  NUMERICAL METHODS 

A commercial software package ANSYS MFX multi-field 
solver has been adopted to solve the Fluid Structure Interac-
tion (FSI) problem.  An FSI problem is one where the flow 
pattern produces forces upon a body that change its shape.  In 
turn, this change of body shape changes the flow pattern, 
giving rise to an interaction between the fluid flow and the 
body structure.  

1. Flow model 

The flow field around the riser is solved by using the un-
steady, incompressible Navier-Stokes equations:  

 0
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Where (x1, x2, x3) = (x,y,z) are the Cartesian coordinates, the 
overbar denotes that the variable is a filtered variable, ui is the 
velocity component in the xi direction, p is the pressure, t is the 
time,  is the fluid density,  is the kinematic viscosity of the 
fluid and ij is the subgrid-scale stress defined as: 

 
ij l j i ju u u u    (3) 

Based on the Boussinesq approximation: 

 )( 2
3
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The governing equations are discretised using an ele-
ment-based Finite Volume Method (FVM).  As turbulence 
model, the SST (Shear Stress Transport) k- model of Menter 
(1994) has been chosen.  This model has been widely tested 
for cases where accuracy is required both in the boundary 
layer, Menter et al. (2006), Lothode et al. (2015), where the 
model becomes the k- model; and also far from the boundary 
layer, where the model becomes the k- model: 
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Fig.1. Scheme of the riser (left) and the simulation domain (right) with 

the riser immersed in the fluid domain. 
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Where Pk is the turbulence production due to viscous and 
buoyancy forces: 
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And where C1, C2,k are model constants. 
The simulations run with a high-resolution advection 

scheme, a second order backward Euler for the transient 
scheme, a high resolution for the turbulence numerics and a 
convergence criterion of 1e-4.  

The convenience of including a model for the local flow 
transition from laminar to turbulent has been considered.  But, 
according to software code handbook, in this case its inclusion 
is not recommendable, due to the Reynolds number range and 
the riser to be moving.  The model is convenient for fixed 
cylinders. 

2. Structural model 

The structural model is the standard for a transient analysis 
of a solid piece.  This model consists of the use of block type 
elements.  The numerical model is that of an iterative process 
where the element stiffness matrix with the boundary condi-
tion of fixed ends and a pressure field upon its lateral surface is 
solved for each time step.  The pressure field is calculated in 
the fluid-dynamic part of the FSI model.  The solution for a 
given time step is used as an initial estimator of the next one. 

According to Huang et al.  (2011a) and Jhingran et al. 
(2008), the equation of a riser can be taken as that of a ten-
sioned beam, whose flow direction (IL) and lateral motion 
(CF) are described, respectively, as: 
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EI is named the structural flexibility.  E is the Young’s 
modulus and I is the riser section moment of inertia.  The 
moment of inertia has the same value for IL and CF motions as 
riser section is a circle.  T is the riser tension.  m is the mass per 
length unit, ma the added mass per length unit.  The added 
mass has also the same value for IL and CF motions due to the 
same reason that in the case of the inertia moment.  c is the 
structural damping, z is the non-deformed riser axial direction, 
as shown in Fig. 1.  x denotes the in-line (IL) direction, y the 
cross-flow (CF) direction.  Fx is the hydrodynamic force in the 
IL direction, which is formed by both the flow drag force and 
the periodic vortex shedding force IL component.  Fy is the 
hydrodynamic force in the CF direction, which is the periodic 
vortex shedding force CF component. 

Eq. 8a and b respond to the phenomena of a body immersed 
in a flow.  A body immersed in a fluid that flows at a certain 
velocity experiences a force upon it in the flow direction.  This 
force is named the drag force and depends on: the body area 
facing the flow, the body shape, the fluid density and the flow 
velocity. 

If the body is not rigid, as it is in the case of a riser, it reacts to 
such drag force with a shape deformation and elongation.  At 
the same time, a tension field inside the body arises.  The ten-
sion and elongation relationship can be calculated with eq. 9.  

 L

L E

 
   (9) 

Where  = T/A, being T the riser tension and A its section 
area.  L is the riser length and L is the riser elongation. 

The tension, together with the body´s structural flexibility, 
determines the body structural vibration frequency spectrum.  
This spectrum is given by eq. 10, 11 and 12, Weaver et al. 
(1974) and Xiao and Wang (2016): 

 2 2
, , ,n t beam n string n beamf f f    (10) 

Where n = 1,2,…n is the mode number and: 

 , 22n string

n T
f

mL
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Table 2.  Riser dimensionless elongation and tension as functions of Reynolds numbers. 

Reynolds number L/L T [N] 

42K 2.92e-5 5080 
84K 4.44e-5 7722 
126K 5.87e-5 10211 

 
 

Table 3.  Structural frequency spectrum of the present work riser. 

Riser vibration frequency spectra 
n f beam fstring 

(Re = 42K) 

fstring 
(Re = 84K) 

fstring 
(Re = 126K) 

f total 

(Re = 42K) 

f total 

(Re = 84K) 

f total 

(Re = 126K) 

1 0.02 0.97  1.19  1.37  0.97  1.19  1.37 

2 0.08 1.94  2.39  2.75  1.94  2.39  2.75 

3 0.17 2.91  3.58  4.12  2.91  3.59  4.12 

4 0.30 3.88  4.78  5.49  3.89  4.79  5.50 

5 0.47 4.84  5.97  6.87  4.87  5.99  6.88 

6 0.68 5.81  7.17  8.24  5.85  7.20  8.27 

7 0.92 6.78  8.36  9.62  6.84  8.41  9.66 

 
 

And: 

 
2

, 42n beam

n EI
f

mL


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The need for these three eq. (10 to 12) is due the fact that 
there is no equation that directly gives the value of the struc-
tural frequency spectrum for a tensioned beam.  But it was 
found, Weaver et al. (1974), that this set of values can be 
calculated as a combination of both the structural frequency of 
a tensioned string, and of the structural frequency of a 
non-tensioned beam.  In this way, the nth structural frequency 
of a tensioned beam fn, t-beam is a function of the nth structural 
frequency of a tensioned string fn,string, and the nth structural 
frequency of a non-tensioned beam fn,beam .The tensioned string 
component accounts for the pre-tension to which a cylinder 
might be subjected directly at its installation.  The 
non-tensioned beam component accounts for the riser material 
and the geometry characteristics.  Riser material is represented 
by its Young modulus E and cylinder geometry characteristics 
by their section inertia moment I.  Hence, the nth value of the 
spectrum of a tensioned beam can be found with equation 10, 
the structural tensioned string frequency component with the eq. 
11 and the non-tensioned beam component with eq. 12. 

Later on, Vortex-Induced Vibration VIV will take place and 
superpose on the deformed and elongated riser.  Above some 
certain Reynolds number value, these vibrations appear as if 
the flow pattern around the body is not constant with time.  
Beside the constant velocity flow pattern, which produces the 
drag force, vortices appear from the flow direction perpen-
dicular body extremes.  These vortices shed alternatively from 
one extreme and the other.  This characteristic of alternatively 
shedding from the body extremes is responsible for riser vi-
bration in the following manner: the vortices spreading pro-

duces upon the body surface and alternating pressure field.  An 
alternating force arises as the resultant force of this alternating 
pressure field.  The vortex shedding frequency, and therefore 
the alternating force frequency, depends on the Reynolds 
number. 

When the vortex shedding frequency equals one of the body 
frequency spectrum values, the lock-in phenomenon occurs.  
Lock-in is a self-sustaining vibration, and may represent a 
high-risk situation for riser integrity.   

One of the main aims of the present work is to demonstrate 
that the body vibration frequency spectrum must be calculated for 
the deformed and elongated riser, rather than for the riser at rest. 

Therefore, the calculation procedure is the following: the 
simulations are carried out, and the time-averaged riser in-line 
displacements for each flow velocity are found.  These dis-
placements are shown in Fig. 4.  By applying Eq. 13 to these 
time-averaged displacement curves the riser elongations are 
obtained. 

    2 2

1 1i i i i
i

L x x z z
      (13) 

Being the difference between this calculated length L’ and 
the original riser length L, the riser elongation is L.  Next, the 
riser tension is obtained by entering these elongations into Eq. 
9. These elongations and tensions are shown in Table 2.  Fi-
nally, the tensions are introduced into Eq. 10 to 12 to obtain the 
riser frequency spectrum for each Reynolds number, repre-
sented in Table 3.  The correctness of this procedure is checked 
by obtaining the riser oscillation frequency values from 
time-story graphics, figs 6 and 7, and summarized in Table 4, 
and comparing them with the values of Table 3.  The accuracy 
of both sets of values demonstrates the validity of the procedure.  
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Fig. 2. Fluid mesh viewed from top (left) and the upper part of the 3D mesh (right), showing element length in the z-direction. 
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Fig. 3. Maximum riser oscillation in the IL (left) and CF (right) directions for the three analyzed meshes. 

 
 
Coming back to eq. 8a and b, a finite element method must 

be used to discretise Eq. 8 and obtain the governing equation 
in the following form: 

           M x C x K x F     (14) 

Where {x} is the nodal moved distance in the three space 
dimensions {x, y, z}, {x}is the nodal velocity vector and 
 x the nodal acceleration vector.  [M], [C] and [K] are the 
mass, damping and stiffness matrices, respectively.  [F] is the 
hydrodynamic force vector.  The governing equation is solved 
using the Hilber-Hughes-Taylor (HHT) method. 

Next, a two-way explicit approach is utilized in the present 
FSI simulation, i.e., the fluid and solid equations are solved 
separately, and there are no iterations between the fluid and 
solid fields within one time step.  Within a single time step, the 
flow equations are solved to obtain the forces on the riser.  
Then the forces are interpolated to the structural mesh using 
the conservative interpolation, and the structural dynamic 
equation is solved to obtain the quantities of riser motion.  

After that, the displacements are interpolated to the fluid mesh 
with the profile preserving interpolation, and the positions of 
the mesh points are calculated and updated using the dis-
placement diffusion model.  The next time step begins with 
solving the flow equations in the updated mesh. 

III.  DESCRIPTION OF THE PROBLEM 

This numerical approach is used to check the occurrence of 
lock-in for three different uniform flow velocities: 0.6 m/s (Re 
= 42K), 1.2 m/s (Re = 84K) and 1.8 m/s (Re = 126K).  The 
Reynolds number is defined as: Re = VD /   , where  is the 
water density, V the flow bulk velocity, D is the riser diameter 
and  the water dynamic viscosity.  During the synchroniza-
tion analysis, a clarification of the riser pre-tension and total 
tension is included, total tension being the sum of the 
pre-tension and the hydrodynamic-induced-tension.  

The model riser has a length to diameter ratio L/D = 475, 
mass ratio of m = 0.937, Young’s modulus E = 3.46e+10 N/m2 
and inertia moment I = 2.01e-6 m4.  The structural damping is  
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Fig. 4. Time-averaged dimensionless IL displacement for the three dif-

ferent Reynolds numbers. 

 
 

set to zero, as is usual in a computational approach.  The 
model´s configuration is shown in Fig. 1.  The flow direction 
is the x-axis.  The riser is fixed at both ends, and it is free to 
move in the x-direction, in-line movement (IL), and in the 
y-direction, cross flow movement (CF).  No pre-tension is 
applied to the riser.  The riser tension field will exclusively be 
the result of the riser response to the fluid forces.  

The riser scheme shows its diameter D and length L as well 
as its coordinate reference system.  The scheme of the riser 
within the fluid domain shows the domain dimensions: the 
domain length is 40D, and the domain width is 20D.  The riser 
is located at a length from the inlet of 10D, and at same dis-
tance from the domain´s lateral sides, also 10D.  The scheme 
shows also how the in-line flow direction (IL) denoted by the 
arrow of flow velocity V, corresponds with the x-axis; the riser 
length with the z-direction; and the cross-flow direction (CF) 
with the y-axis.  

The fluid grid can be seen in fig. 2.  It has a dense prism 
boundary layer, resulting from a mesh sensitiveness analy-
sis.  This was carried out in order to find the prism first layer 
thickness required to obtain both a value of y+ < 1 for the 
maximum simulated velocity, 1.8 m/s, and a riser drag coef-
ficient value near that of a cylinder, generally taken to be 0.65.  
It also has a good vortex shedding pattern.  The final y+ was 
lower than 1 and the CD value obtained was 0.67.  Therefore, 
the boundary layer was finally fixed to be 10 layers of prisms 
with an exponential growth of 1.35 and a first layer thickness 

of 2e-5 m.  In Fig. 2 (right) the vertical length of the elements, 
required to obtain accurate riser vibration mode shapes, can 
also be observed.  

Following the recommendations of Holmes et al. (2006), 
the mesh of the riser has about 2.5K nodes on planes Z = 0 and 
Z = 475, concretely 2553.  On the other hand, following the 
procedure of Xiao and Wang (2016) this number of elements 
by plane is kept and the z-length is divided into 200, 175 and 
150 elements of equal length, to produce meshes 1, 2 and 3, 
respectively. 

Afterward, a mesh sensitiveness analysis was carried out in 
order to check other possible sources of error, such as nu-
merical diffusion or flow pressure mapping accuracy on the 
riser surface.  The results can be observed in fig. 3, where the 
oscillation in both the IL and CF directions were recorded over 
time until maximum amplitude was reached.   Mesh 2 was 
chosen for the simulations. 

Time step analysis was carried out in the following way: 
knowing the anticipated frequency values, an initial estimation 
of the time step required to capture a wavelength with enough 
points was made.  The first chosen time-step was 0.02 sec-
onds, but simulations showed the need to reduce it.  Values of 
0.015 s and 0.0125 s were analyzed.  The value of 0.015 sec-
onds was acceptable for Reynolds numbers 42K and 84K, and 
0.0125 s was found to be acceptable for Reynolds number 
126K. 

IV.  RESULTS AND DISCUSSION 

Fig. 4 shows the IL average dimensionless displacement 
from the original straight riser as function of the riser dimen-
sionless length coordinate Z/D for the three shown current 
velocity values.  The average deformation is an effect of the 
flow constant drag force, and from this average deformation 
shape the oscillation produced by oscillating vortex shedding 
forces takes place.  The deformation is made dimensionless by 
dividing deformation by riser radius.  Once obtained these 
deformation curves, their length is calculated as: 

By applying equation 13 on the in-line average displace-
ment curves of fig. 4 the riser length elongations L are 
yielded.  Entering these elongations and riser characteristics 
into equation 9 the riser tensions are obtained.  Both elonga-
tions and tensions are shown in Table 2.  

Finally, entering the riser material Young modulus E, the 
moment of inertia I, the mass per unit length and tension T into 
equations 10 to 12, the structural frequency spectrum is ob-
tained, as shown in Table 3. Note that as tension varies with 
Reynolds number, and the tensioned-string frequency com-
ponent depends on the tension, for each Reynolds number and 
associated tension there is a different set of tensioned-string 
frequency values. 

As observed in Table 3, the frequency of the riser as a beam 
fn,beam is about one order of magnitude lower, having a negli-
gible effect on the total frequency. 
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Table 4.  Oscillation periods and frequency values for IL and CF oscillation as functions of Reynolds numbers. 

Reynolds number IL CF 

Z/D = 125 Z/D = 237.5 Z/D = 125 Z/D = 237.5 
42K 0.360 s (2.78 Hz) 0.375 s (2.67 Hz) 0.735 s (1.36 Hz) 0.776 s (1.29 Hz) 
84K 0.173 s (5.78 Hz) 0.171 s (5.85 Hz) 0.341 s (2.93 Hz) 0.348 s (2.88 Hz) 

126K 0.146 s (6.84 Hz) 0.146 s (6.84 Hz) 0.292 s (3.42 Hz) 0.292 s (3.43 Hz) 
 
 

1. Riser envelopes 

In fig. 5 the IL oscillation (left) and CF lateral oscillation 
(right) for the three analyzed cases are shown.  Vibration mode 
might increase with Reynolds number, as occurs when the 
Reynolds number changes from 42K to 84K, or it might re-
main the same, as occurs when the Reynolds number changes 
from 84K to 126 K.  In the first case the oscillation mode 
changes from a 3rd mode to a 5th mode for the IL oscillation, 
and from a 1st mode to a 3rd mode for the CF oscillation. 

CF maximum amplitude increases with Reynolds number, 
being about 0.7D for Re = 42K, just under 1.0D for Re = 84K 
and just under 1.5D for Re = 126K.  This behavior agrees with 
observations made by Bourghet et al. (2011a), Resvanis et al. 
(2012), Xiao and Wang (2016) and others.  The CF maximum 
amplitude is about three times the IL maximum amplitude, in 
agreement with results reported by Bearman (2011). 

IL maximum amplitudes do not increase evenly.  In fact, 
from Re = 42K to Re = 84K they decrease slightly.  This might 
be the result from the increase in riser tension level that would 
make a greater turbulent force component in the flow direction 
necessary to produce the same oscillation. 

The values of the IL oscillation amplitude at the envelope 
nodes are different from zero.  The envelope nodes are the 
envelope span points with narrow amplitudes.  This empha-
sizes the modulation of the standing wave pattern, which 
would have node widths of zero, by superimposing traveling 
wave components. 

All the CF and IL responses are quite symmetric, but the IL 
oscillation for Re = 126K shows clear non-symmetric behav-
ior.  This has been observed also by Xiao and Wang (2016) and 
seems to be the oscillation instability before change to a higher 
oscillation mode for Reynolds numbers immediately higher. 

2. Oscillation time histories 

In fig. 6 the oscillation time histories for both IL (left) and 
CF movements (right) are shown.  In all cases the time to reach 
a stable pattern has been subtracted.  It can be observed how, 
for all three cases, the IL response frequency is nearly twice 
that of the CF response frequency as Table 4 shows.  It can be 
also observed that the procedure accuracy is good, being the 
frequency value difference between predictions (Table 3) and 
results (Table 4) small, and a result of water damping, as it was 
also observed by Huang et al. (2011b). Also, just as observed 
by authors such as Resvanis et al. (2012) and Xiao and Wang 
(2016), the IL and CF oscillation frequencies increase with the 
Reynolds number.  

This implies that, as the IL frequency is nearly twice the CF 
frequency, the riser behaves as a tensioned string, Lie and 
Kaasen (2006). This demonstrates that the riser is a tensioned 
riser even if it is not pre-tensioned. Rather, it is tensioned by 
the effect of the fluid flow. For a non-tensioned beam the ratio 
is lower than 2, due to the quadratic relationship between 
mode and frequency, eq. 12 and 13, Weaver et al. (1974). 

In fig. 6 it can also be observed that CF oscillation is not 
always shown as being formed by perfectly shaped sinusoidal 
shapes, while on the other hand, IL oscillation is.  This 
non-sinusoidal shape is more intense in the Z/D = 125 riser 
span than in the Z/D = 237.5 one.  The explanation of this 
effect, also observed in some oscillation time histories by Xiao 
and Wang (2016), is the presence of harmonics of slightly 
different frequencies and smaller amplitudes.  

3. Synchronization analysis 

Now, the synchronization or lock-in phenomenon is ana-
lyzed for the three Reynolds number cases.  In fig. 7 the riser 
CF lateral oscillation at the two displayed riser sections is 
shown again on the left side.  The transversal component of the 
flow velocity at a point downstream of the riser and at the 
same riser spanwise point can be seen on the right side.  The 
comparison of frequency values for both the CF riser oscilla-
tion and the transversal velocity component as a means of 
quantifying the vortex shedding frequency is the method to 
analyze synchronization, Bourghet et al. (2011a).  The line 
where this transversal velocity component is measured is 
located downstream of the riser at (x, y) = (15D, 0).  For the 
same riser spanwise values Z/D = 125 and 237.5 on this line, a 
sample point appears where the CF component of the velocity 
is measured across time. 

For the Reynolds number 42K case the results show that the 
periods between curve nodes--that is, where oscillation curves 
cross the y = 0 axis--for both the frequency of the transversal 
component of the flow velocity, and the frequency of CF vi-
brations, are 1.32  0.005 Hz for both spanwise points.  The 
other way to measure these frequency values is shown in fig. 
8, which displays the CF oscillation and transversal velocity 
component results in the frequency domain instead of in the 
time domain.  The frequency-domain results are obtained by 
applying the Fast Fourier Transform to the time-dependent 
results.  The frequency value 1.32 Hz is again obtained.  This 
frequency is lower than the natural frequency for such vibra-
tion modes, 1.67 Hz.  This effect has also been found by other 
authors, Bourghet et al. (2011a, 2013). 
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Fig. 5. Riser response IL envelope (left) and CF envelope (right) for the three Reynolds numbers: a) Re = 42K, b) Re = 84K and c) Re = 126K. 
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Fig. 6. Oscillation time histories at Z/D = 237.5 (upper) and Z/D = 125 (lower) showing IL oscillation (left) and CF oscillation (right) for the three 

Reynolds numbers: a) Re = 42K, b) Re = 84K and c) Re = 126K. 
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Fig. 7. Riser CF oscillation (left) and transversal flow velocity (right) for sections Z/D = 237.5 (upper) and Z/D = 125 (lower) and for the three Reynolds 

numbers: a) Re = 42K, b) Re = 84K and c) Re = 126K. 
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Fig. 8. Frequency spectra of the riser CF oscillation (left) and transversal flow velocity (right) for sections Z/D = 237.5 (upper) and Z/D = 125 (lower) 

and for the three Reynolds numbers: a) Re = 42K, b) Re = 84K and c) Re = 126K. 
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Fig. 9. Drag and lift force coefficients as functions of Reynolds numbers. 

 
 
Fig. 8 also shows that the riser oscillation presents two 

peaks, one at the above main frequency, and a second one at 
about three times this frequency, and is of smaller amplitude.  
The transversal velocity spectrum shows only one frequency 
peak, the vortex shedding frequency.  Lock-in takes place at 
the main frequency, as observed by Bourghet et al. (2011a). 
The difference in values between the CF oscillation and the 
transversal velocity component is small enough to be consid-
ered lock-in.  

4. Fluid forces 

In fig. 9 the drag and lift force coefficients, CD and CL are 
shown for the three analyzed cases.  The drag force coefficient 
CD shows a decreasing behavior when the Reynolds number 
increases, but in all cases is much larger than that of a fixed 
cylinder.  This pattern was also observed by Resvanis et al. 
(2012).  On the other hand, the lift force coefficient CL re-
mains quite stable when the Reynolds number increases, as it 
isslightly higher for the higher Reynolds number, Re = 126K. 
This behavior corresponds well with the observations of 
Bourghet et al. (2011a).  

5. Orbital trajectories 

Fig.10 shows the trajectories of different Z/D sections in 
their x – y planes.  The forms that appear are typical of ten-
sioned risers, and similar to those observed by Xiao and Wang 
(2016) with some differences due to the much higher Reynolds 
number range.  These differences are, first, that both the IL and 
CF amplitudes are much larger.  And second, that both the IL 
and CF oscillation amplitudes increase.  Nevertheless, the IL 
amplitude increases in a particular way: as the Reynolds 
number grows the trajectory tends to “collapse” into a thicker 
curve.  That is to say, as the Reynolds number increases, and 
for a certain CF position of the trajectory, the differences of IL 
amplitudes among the several oscillation periods are smaller.  
As an example, for Z/D = 50 the trajectory for Re = 84K is 
similar to a lemniscates, but when the Reynolds number in-

creases to Re = 126K the trajectory “collapses” to almost a 
half-circumference. 

Also interesting is the fact that the “non-collapsed” trajec-
tories move counterclockwise.  According to Bourghet et al.  
(2011b), the counterclockwise direction is predominant in the 
synchronization region.  Thus, this movement direction cor-
responds well with the equality of CF oscillation and trans-
versal velocity frequency values found in the synchronization 
chapter.  In the “collapsed” trajectories there is no room for 
clockwise or counterclockwise movements.    

Comparing these results with the low Reynolds numbers 
ofXiao and Wang (2016), much bigger amplitudes in the CF 
direction can be observed, but in the IL direction the higher 
average deformation and tension produces a smaller ampli-
tude, as the vortex shedding forces to average drag force ratio 
becomes smaller.  The CF oscillation amplitude increases with 
the Reynolds number following the observations of the tests 
carried out for the same Reynolds number range by Resvanis 
et al. (2012) 

V.  CONCLUSIONS 

The main results obtained in the present work are the fol-
lowing: the dominant mode numbers in the IL and CF oscil-
lations either increase or remain the same as the Reynolds 
number increases.  Before the change of vibration mode one 
vibration instability appears that is observed as a 
non-symmetric oscillation envelope.  This occurs first in the IL 
direction.  

Both the IL and CF oscillation average amplitudes increase 
with the Reynolds number.  Nevertheless, locally the IL am-
plitude can decrease.  This is because, for the IL oscillation, 
where vibration moves in the same direction as the flow, the 
riser is heavily tensioned in this direction, and the vortex 
shedding forces required to produce a wide oscillation are 
much higher.  

Dominant frequencies and the lift coefficient also increase  
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Fig. 10.  Trajectories of different riser Z/D sections for a) Re = 42K, b) Re = 84K and c) Re = 126K. 
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with the Reynolds number, but the drag coefficient decreases. 
The CF maximum amplitudes are about 3 times the IL 

maximum amplitudes, and as occurs with the IL maximum 
amplitude, it also increases with the Reynolds number. 

Fluid forces can turn a riser into a tension-dominated riser 
even if the riser is not a pre-tensioned riser.  The riser IL fre-
quencies are nearly twice the CF frequencies.  This implies 
that the riser behaves as a tension-dominated riser. 

Including the flow-induced tension in the analytical calcu-
lation of the riser vibration frequencies allows much higher 
calculation accuracy. 

Synchronization analysis has been performed by calculat-
ing and directly comparing the oscillation period in the CF 
oscillation time histories to the transversal component of the 
velocity.  It has also been checked by calculating the frequency 
spectra of these variables in the frequency domain with the 
Fast Fourier Transform, and finally, by checking the counter-
clockwise movement of riser orbital trajectories.  The lock-in 
condition is established at the vibration mode predominant 
frequency for the three Reynolds numbers. 
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