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Properties of Metal Oxide Nanofluids
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b Yu Da University of Science and Technology, Miaoli County, 36143, Taiwan, ROC
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Abstract

This study describes the comprehensive characterization of the diverse water-based nanofluids involving aluminum
oxide, titanium dioxide, and zinc oxide nanoparticles, which were prepared through the two-step synthesis method
assisted by a microemulsion ultrasound skill with effects of both weight-percent concentration (wt.%) in the range of
1.0% and 5.0% and between 20 �C and 40 �C. The mean cluster size, zeta potential, pH value, viscosity, thermal con-
ductivity, absorbance, light absorption, and electrical charge density of the various nanofluids were surveyed by relative
experiments. The results showed that the 2 wt.% Al2O3, 2 wt.% TiO2, and 1 wt.% ZnO nanofluids were preferentially
prepared with a good suspension stability through four weeks. The thermal conductivity and the power generation
increased with an increase in temperature. The present synthesis method is suitable for fabricating the metal oxide
nanofluids at a temperature between 20 �C and 40 �C and a concentration of 1 wt.% to 5 wt.%.

Keywords: Nanofluid, Two-step Synthesis, Electrochemistry, Redox Reaction

Introduction

S ince the 20th century, after the launch of the
suspending nanopowders within a liquid,

nano liquid research has marked nanotechnology
as the modern skill with broad applications in
diagnosis, sensing, and therapeutic medicine,
agriculture, textiles, and energy, etc [1-5]. The
nanofluid has various striking features such as the
capacity to enhance thermal, magnetic, and elec-
tric performances of the base fluid. In recent
times, metal oxide nanoparticles blended with
base fluids have received much attention as the
most promising alternatives to the existing
working fluids [6-11]. Metal oxide nanofluids of
suspended homogeneous metal oxide nano-
particles possess good thermal performance but

poor suspension and stability, restricting its use,
because of a strong size effect against thermal
conductivity and fluid behavior. Manipulation of
hydrodynamics, stochastic, electrostatic, and Van
Der Waals’ forces altered the surface area of the
nanoparticles and the collision frequency, which
change the boiling heat transfer, thermal con-
ductivity, and suspendability of the nanofluids.
The major factors dominating the suspension and
stability of the nanofluids are the particle size and
geometry, concentration, surface obstruction, so-
lution chemistry, and cohesion situation of
nanoparticles within the nanofluids [12, 13].
The present study blended metal oxide nano-

particles directly into the aqueous solution to pre-
pare the metal oxide nanofluids known as the
immediate two-step synthesis method, which lead
to nanoparticle clumping and reducing
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suspendability of nanofluids. The convenience of
the immediate two-step synthesis method was that
the granularity and concentration of the metal oxide
nanofluid could be better governed based on the
usages [14]. Some significant factors for assessing
the suspendability of nanofluid include visual ex-
amination, pH value, zeta potential, and particle size
distribution apparatus. Three following methods
were employed to stabilize the suspended metal
oxide nanoparticles in this study, wherein the pH
value of the metal oxide nanofluid was transformed
far away the isoelectric point (IEP) to avoid sedi-
mentation, an ultrasonicator was utilized to disperse
the nanoparticles, and a surfactant/dispersant was
blended to elevate dispersion and suspension [15,
16]. The present study also adopted an emulsifying
agent to improve the suspendability of the nano-
particles in the metal oxide nanofluid based on past
studies [17-19]. Wang and Wang [17, 19] found that
higher concentrations of the emulsifying agent
decreased the zeta potential of the suspended
nanoparticles and the thermal conductivity of the
nanofluid. They obtained the best concentrations of
aluminium oxide (Al2O3) nanopowder, emulsifying
agent, and dispersant operating at fixed 2 wt.% and
temperature between 25 �C and 40 �C. The nano-
fluids displayed higher thermal conductivity
compared to the base fluid, and an increase in
thermal conductivity with an increase in tempera-
ture. The nanoparticles enhanced the heat transfer
rate even at a small volume fraction [20-24].
Gan et al. [25] observed that the thermal conduc-

tivity of TiO2 nanofluid increases by 7.28% when it
was prepared under optimum conditions, and this
titanium dioxide (TiO2) nanofluid with the optimum
thermal conductivity was used as the working fluid.
Nadooshan [26] prepared and evaluated the thermal
conductivity of zinc oxide (ZnO) nanofluid by a two-
step method and a hot-wire skill pro instrument.
The results revealed that the thermal conductivity of
ZnO nanofluids significantly increases with
increasing solid volume fraction at higher temper-
atures. Eventually, the present research investigated
the thermophysical properties and thermoelectric
generations of metal oxide nanofluids as working
fluids and electrolytes, respectively, containing
Al2O3, TiO2, and ZnO nanoparticles blending
aqueous solution. A microemulsion ultrasonic
technique was utilized to prepare the metal oxide
nanofluid. Wang et al. [27-30] exploited the Al2O3

nanofluid as an electrolyte compared with the other
aqueous solutions based on the pH value, Zeta po-
tential, viscosity, and thermal conductivity to indi-
cate the most favorable stability, thermal
conductivity, particle fraction, and stable current

output. The present study intended to develop a
suitable synthesis method for fabricating the metal
oxide nanofluids at a temperature between 20 �C
and 40 �C and a concentration of 1 wt.% to 5 wt.%.

Methodology

The nanofluids were prepared through the two-
stage synthesis, via the measurement of different
nanofluids' thermoelectric properties, and the deri-
vation of their empirical formulas. The nano-
particles and deionized water (DW) were
proportioned and added into the interface agent to
increase the suspension stability of the nanofluids,
and the nanoparticle was dispersed in the solution
with ultrasonic vibration technology. The condition
of the nanofluid at different times and concentra-
tions was detected by the instrument, and the
empirical formulas of thermoelectric performance
were derived through the intelligent dimensional
analysis of the experimental data.

Nanofluid preparation

The current investigation employed three kinds of
nanoparticles including aluminum oxide, titanium
dioxide, and zinc oxide. The densities and mean
radii of the individual Al2O3 (Yong-Zhen Tech-
nomaterial Co., Taiwan), TiO2 (Evonik Degussa Co.,
Taiwan), and ZnO (SigmaeAldrich Co., Taiwan)
nanoparticles were respectively 3.97 g/cm3 and
12 nm, 3.90 g/cm3 and 21 nm, and 5.50 g/cm3 and
20 nm. The specific surface areas of Al2O3 and ZnO
were greater than or equal to 100 m2/g, and 50 m2/g,
respectively. The specific surface area of TiO2 was
50 ± 15 m2/g. Furthermore, the thermal conductiv-
ities and specific heats of the Al2O3, TiO2, and ZnO
nanoparticles were approximately 38 W/(m$K) and
0.78 kJ/(kg$K), 12 W/(m$K) and 0.52 kJ/(kg$K), and
21 W/(m$K) and 0.49 kJ/(kg$K), respectively. The
SEM (Scanning Electron Microscope) images of the
prepared nanoparticles are demonstrated in Fig. 1.
Fig. 2 presents the manufacturing process of these

three nanofluids with different weight percent con-
centrations ranging from 1.0 wt.% to 5.0 wt.%. A
water-soluble dispersant labeled QF-DTK-190
(Yong-Zhen Technomaterial Co., Taiwan) was used
for dispersing the Al2O3, TiO2, and ZnO nano-
particles uniformly in the de-ionized water (DW)
and its density, thermal conductivity, and pH value
were approximately 1.0 g/cm3, 0.52 W/(m$K), and
6.5, respectively. The concentrations of the interface
active agents and the oscillatory time of supersonic
waves influenced the suspended stability and the
powder sizes of Al2O3, TiO2, and ZnO nanofluids.
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The emulsifying agent containing the non-ionic
surfactants Tween#20, Tween#80, Span#20, and
Span#80 all from First Chemical Co., Taiwan were
incorporated to enhance the suspension stability of
the nanofluids using ultrasonic vibration. Tween#80
(HLB ¼ 15) and Span#20 (HLB ¼ 8.6) were mixed
and stirred at 400 rpm for 60 min into an HLB ¼ 12
emulsifying agent and its density and thermal con-
ductivity were approximately 1.05 g/cm3 and
0.175 W/(m$K), respectively.
Four experimental preparation instruments were

used. An analytical balance (Shimadzu Co., Japan)

with a maximum measurement value of 220 g and
the lowest precision of 10�4 g was adopted to gauge
the slight weight of nanoparticles and interface
active agent. An electromagnetic hot plate with a
stirrer named PC-620D (Corning Co., USA) was
employed for stirring the nanofluids between 60 and
1150 rpm at a maximum heating temperature of
550 �C. The emulsifying agent (HLB ¼ 12) and
deionized water were heated and mixed by stirring
at 80 �C and 500 rpm for approximately 50 min. The
samples were cooled naturally or by using a con-
stant temperature bath at 25 �C. A circulating water
bath (He-Yu Technology Co., Taiwan) with a heat-
ing power of 1 kW, a frozen force of 1/3 HP, a vol-
ume capacity of 20 L, and the operating temperature
between �20 and 100 �C was employed at a constant
temperature to preserve the temperature of the
nanofluids. A supersonic homogenizer of ultrasonic
250 model (He-Yu Technology Co., Taiwan) was
used to prepare the various Al2O3, TiO2, and ZnO-
nanoparticle concentrations of the nanofluids. The
maximum power, supersonic frequency, and pro-
cessing capacity of the ultrasonic 250 model applied
were 250 W, 23 kHz, and 0.2e400 mL, respectively.
These nanofluids were cooled to continue oscillation
at a total oscillation time of approximately 60 min
[17, 18]. The thermal conductivities and power
densities of the various Al2O3, TiO2, and ZnO
nanofluids with different concentrations were
analyzed, and changes were observed after resting.
Afterward, the intelligent dimensional analysis was
used to derive an empirical formula using the
experimental data.

Nanofluid property test

These nanofluids testing instruments are shown
in Fig. 3. Six thermal performances were assessed to
measure and acquire for the suspendability and
stability of these nanofluids with different concen-
trations including the grain size, thermal conduc-
tivity, zeta potential, pH value, viscosity, and
absorbance. Besides, the micro-power generation

Fig. 1. SEM images of nanoparticles.

Fig. 2. Nanofluids preparation procedure.
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characteristics in power generation facility of
reductioneoxidation reaction were explored by the
electrical performance detection of the metal oxide
nanofluids as electrolytes to discuss the electrical
properties involving the output current and the
electric density. The detection steps for testing each
thermoelectric property are discussed henceforth.
The suspendability and stability of the metal oxide

nanoparticles within the nanofluid was based on the
mean grain size. The grain size and zeta potential
analyzer (Malvern Co., Switzerland) was used to
observed the mean grain size of metal oxide pow-
ders to determine the influence of varying concen-
trations and oscillation times on grain size. The
particle size analyzer was turned on waiting for
5 min to warm-up and connect to the software in-
strument. The electrode pad of the surface potential
specific colorimetric tank was checked. Next, the
sample was kept into the specific colorimetric tank
without bubbles and then set in the analyzer for
measuring the particle size and zeta potential of
metal oxide nanofluids. A portable thermal con-
ductivity meter, KD2 (Decagon Devices Inc., USA)
was adopted to survey the thermal conductivity
coefficients of metal oxide nanofluids. The probe
was immersed completely into the nanoliquid and
left as such for 2 min to record the stable data. The
operating environment of KD2 was �20 to 60 �C and
its measuring range of thermal conductivity was
0.02e2 W/(m$K) with an accuracy of ±2.5%. The
main principle of KD2 is based on the transient hot-

wire theory derived from one-dimensional Fourier's
law as mentioned in equation (1).

K¼ Q
A$ðT2 � T1Þ$

�
t2

t1

�
ð1Þ

where K is the thermal conductivity, Q is the heat
flow, A is the area, T is the temperature, and t is the
time. When t equals zero, thermal equilibrium is
achieved. The time changes from t1 to t2t2 and
temperature changes from T1 to T2 as given one unit
of the Q. During this thermodynamic process, the
temperature increases or decreases after domi-
nating to changes with thermal energy. Finally, the
thermal conductivity K of metal oxide nanofluids
can be estimated.
The zeta potential alters along with acid and alkali

(pH) value and isoelectric points (IEPs), which is a
critical factor for deciding the suspendability and
stability of the metal oxide powders within the
nanofluids. Scilicet zeta potential with the pH value
of the metal oxide nanofluid was examined to
confirm the presence of sufficient electrostatic
repulsion between the metal oxide nanoparticles.
The desktop pH meter (Metrohm company of
Switzerland) was used to measure the pH value of
nanofluids with different concentrations of surfac-
tants and metal oxide nanoparticles, which could be
compared with the surface potential to avoid the IEP
of metal oxide nanofluids. Briefly, the pH meter was
started and the initial value was adjusted by using

Fig. 3. Instruments used to test nanofluids.
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the calibration solutions at pH 3, 7, and 9. The probe
was then rinsed with deionized water and dried
carefully with a dry tissue. The probe was then
placed in the solution and the instrument test was
allowed to finish. The zeta potential of metal oxide
nanofluids at an IEP has zero value. A spectropho-
tometer U-1900 (Hitachi Inc., Japan) was used to
measure the absorbance of the metal oxide nano-
fluids at different weight concentrations and pres-
ervation times. The light absorbance was defined as
the portion of light energy absorbed on the passage
of light source through the metal oxide nanofluids.
The absorbance value can judge the suspension
property of the metal oxide nanofluids. The range of
wavelength measurement by the U-1900 was be-
tween 190 nm and 1100 nm with a bandwidth of
1.5 nm and an error range of ±0.5 nm.
The viscosity of the fluid is also closely related to

the suspension and stability and is a crucial factor
for the thermoelectric performance of metal oxide
nanofluids. High-viscosity fluids affect the Brownian
movement of the metal oxide nanopowders in the
liquid and easily cause aggregation and precipita-
tion. Therefore, the viscosity of each metal oxide
nanofluid was measured using a capillary viscosity
meter, K698 (Cannon Inc., USA) based on the ASTM
D445 standard test for the kinematic viscosity of
transparent and opaque liquids, which has a
repeatability of 0.11% in most situations. A rotor of
K698 was selected for measuring low viscosity
fluids, and the test solution was poured in a water
tube at a constant temperature of 40 �C ± 0.02 �C, at
appropriately set rotation speed. The deviation of
K698 was less than ±3%. Thermoelectric properties
of the metal oxide nanofluids were measured by the
battery framework as shown in Fig. 4. The battery
tank was assessed for currents, voltages, and power
outputs in different metal oxide solutions as the
electrolytes in a battery cell through redox reactions
exploited with red brass (cathode) and aluminum
(anode) electrodes at different concentrations under
distinct temperatures. Each electrode under the

liquid surface has a surface area of about
1151.5 mm2 for a reaction. These electrodes have a
diameter of 17.8 mm and a length of 68 mm. The
dimension of the battery tank is 69.9 mm � 48.8 mm
x 30.3 mm. The electrolyte fixed at 50 mL was added
into the battery tank. The electric charge density
was adopted to appraise the power generation ca-
pacity of the metal oxide water-based nanofluids,
which was calculated by the value of electric quan-
tity divided by the electrode reaction area.

Results and discussion

The present study explored the suspensibility and
stability of deionized water (DW) as a solvent with
the addition of emulsifier and dispersant into the
metal oxide nanofluids and discussed the impacts of
surfactant and ultrasonic oscillating time on the
metal oxide nanofluids at varying concentrations of
the solution. The detection range of the metal oxide
nanofluids was as per earlier publications [17, 18].
The nanofluids precipitate particles in the static
environment with time. Quantifications of mean
grain size, pH value, density, zeta potential, viscos-
ity, and absorbance were utilized to define the sta-
bility, suspensibility, and the better concentration of
the metal oxide nanofluids. The concentrations of
the metal oxide nanofluids were in the range of
1.0e5.0 wt.%. The experimental findings were
employed in intelligent dimensional analysis to
obtain the empirical formulas, which took into ac-
count the emulsifying agents.
To improve the suspension stability of the metal

oxide nanofluids, the emulsifying agent (HLB ¼ 12)
and dispersant were blended with nanofluids for
expanding the thickness of the double dielectric
layer and decreasing the surface tension on the
surface of metal oxide nanoparticles. Fig. 5 exhibits
the average size of metal oxide nanofluids with or
without surfactant. Two layers comprising an
emulsified bed and a sediment bed were observed
in the metal oxide nanofluid after it was kept stable
and motionless for a specific period. The mean grain
size of nanofluid without surfactant increased and
precipitated after one week of being motionless.
Inversely, the metal oxide nanofluids with the sur-
factant suspended for a longer duration of 28 days
above. Fig. 5(a) displayed that the titanium dioxide
(TiO2) nanofluid without surfactant added had
obvious particle agglomeration after seven days.
The mean size of the TiO2 nanoparticles increased
from 47 nm to 556 nm. However, the particle
agglomeration phenomenon of the nanofluid with
2 wt.% surfactant added was relatively small from
53 nm to 78 nm within 35 days. Fig. 5(b) shows that

Fig. 4. Battery framework.
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the ZnO nanofluid without added surfactant had
significant particle agglomeration because the den-
sity of ZnO is larger than that of TiO2. The mean size
of ZnO nanoparticles increased from 202 nm to
685 nm. However, the particle agglomeration phe-
nomenon of the nanofluid containing 1 wt.% sur-
factant was relatively small from 156 nm to 215 nm
within 28 days. Most of the heavier and clustered
metal oxide nanoparticles without surfactant effects
precipitated and agglomerated to the bottom due to
gravity.
In the present study, the ultrasonic micro-

emulsification technology was used to force the
dispersion of nanoparticles after coating by emul-
sification, which was a transient phenomenon. The

oscillation time required to prepare nanofluid can
be observed through the size of the nanoparticles,
which affects the suspension of the nanoparticles
and determines the effects of different metal oxide
nanofluids and ultrasonic oscillation time on the
nanoparticles size. In the TiO2 nanofluid shock time
experiment, the mean grain size of the nanoparticles
was 330 nm after only magnetic stirring. Neverthe-
less, the mean grain size of the nanoparticles was
72 nm and 57 nm after the ultrasonic shock of
30 min and 60 min, respectively. Further, the mean
grain sizes of the nanoparticles were 55 nm and
50 nm after 90 min and 120 min, respectively.
Fig. 6(a) shows that the TiO2 nanofluid had better
nanoparticle size after 60 min of oscillation time. In

)
mn (eziS
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Days

)
mn(eziS

ega revA

Days

(a)TiO2 (b)ZnO

Fig. 5. Nanofluids with or without surfactant.
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Fig. 6. Crushing time of ultrasonic action for metal oxide nanoparticles.
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the ZnO nanofluid shaking time experiment, the
mean grain size of the nanoparticles was 388 nm
after magnetic stirring. After ultrasonic vibration,
the mean grain sizes were 195 nm, 166 nm, 152 nm,
and 150 nm, after 30 min, 60 min, 90 min, and
120 min, respectively. The mean grain size of the
ZnO nanoparticles had a tendency to shrink with
the increase in the shaking time, however, the
amplitude of shrinkage at 90e120 min shaking time
was not significant as shown in Fig. 6(b).
Table 1 lists the mean grain diameter of the metal

oxide nanoparticles used in the present study at rest
for four weeks. After keeping still for seven days, the
mean grain size increased only slightly and no
precipitation happened. For the Al2O3 nanofluid,
the discriminations in mean grain size for the other
specimen were minor except that the 1 wt.% spec-
imen for which the mean grain size increased nearly
30 nm at two weeks. However, the best concentra-
tion of the Al2O3 was the 2 wt.%. The nanoparticle
sizes of TiO2 nanofluid reduced with an increase in
concentration because of the isoelectric point (IEP).
The surface potential of the 1 wt.% TiO2 nanofluid
was insufficient to cause nanoparticle agglomera-
tion, and its mean grain size increased by 27 nm
compared with those at other concentrations over
1e28 days. The mean grain size of the ZnO nano-
fluid increased with increasing concentration. From
1 to 28 days, the surface potential of 5 wt.% ZnO
nanofluid was closer to the IEP so that the
agglomeration was more acute with a total increase
in sizes of 64 nm. The above outcomes signify a
quicker precipitation rate of the metal oxide nano-
particles after staying motionless for a long term or
centrifuged for metal oxide nanofluids. In fact, the
mean grain size cannot exactly depict the

precipitation of the metal oxide nanofluids. Intrin-
sically, observations with the naked eye and absor-
bance measurements had to be done in a
supplement to decide the best suspendability and
stability of the metal oxide nanofluids [17, 18].
The surface potential of the metal oxide nano-

fluids is in effect, the strength of mutual repulsion
between these nanoparticles. The metal oxide
nanofluids had an IEP at a specific pH, therefore, the
surface potential of the metal oxide nanofluids at the
IEP was zero resulting in the agglomeration and
causing precipitation. The pH value and surface
potential of the metal oxide nanofluids were detec-
ted regularly by the instrument to avoid approach-
ing the IEP. In other words, the farther the pH value
of the metal oxide nanofluids was from the IEP, the
more net charge, at a faster electrophoresis speed,
and the converse at a slower speed. Consequently,
an appropriate pH value for preparing the metal
oxide nanofluids should be selected to ensure a
large difference in the charge of the nanoparticles,
which is more conducive to the separation from
each other. The zeta potential of the metal oxide
nanofluids changed along with the weight concen-
trations in the present study and adding an emul-
sifying agent (pH ¼ 6.5) decreased the zeta
potential. The 2 wt.% Al2O3 nanofluids at pH 5.18
had rather well suspension stability [17, 18]. Fig. 7(a)
displays that the IEP of the TiO2 nanofluids was
nearly at pH 7.3. The pH value and surface potential
of the TiO2 nanofluids between 1.0 wt.% and
5.0 wt.% decreased with concentration, in a down-
ward trend. The pH value of the 1.0 wt.% TiO2

nanofluids was closer to their IEP so that the surface
potential was insufficient resulting in more obvious
agglomeration. The IEP of the ZnO nanofluids was
around a pH of 9.2 as shown in Fig. 7(b). The pH
value of the 5.0 wt.% ZnO nanofluids demonstrated
significant precipitation. This was because the
emulsion layer became thicker with reduced zeta
potential due to the increase in emulsifier concen-
tration. The pH values for the metal oxide nano-
fluids employed in the present study did not come
closer to their IEPs.
Table 2 reveals that the thermal conductivity of

the metal oxide fluids may not raise with the in-
crease in the concentrations of the emulsifying
agent. However, the thermal conductivities for the
metal oxide nanofluids raised with an increase in
temperature. This may be because the thermal
conductivity of the emulsifying agent was 0.15 W/
(m$K); while the emulsifying agent can overcover
the metal oxide nanoparticles causing an increase in
their surface tension so that they do not aggregate
without affecting the thermal conductivity.

Table 1. Changes in metal oxide nanoparticle grain size for four weeks.

Mean grain size of nanofluid (nm)

wt.%
Day

1.0 2.0 3.0 4.0 5.0

Al2O3 nanofluids 1 155.2 168.9 198.1 202.6 206.1
7 159.2 170.1 200.6 206.8 210.4
14 186.5 167.1 210.1 209.3 218.8
21 188.6 175.9 211.9 215.6 223.5
28 192.5 185.3 213.2 223.8 230.2

TiO2 nanofluids 1 65 48 50 40 42
7 73 50 55 43 48
14 78 56 58 50 49
21 83 60 64 48 52
28 92 67 68 55 56

ZnO nanofluids 1 156 162 167 171 177
7 166 172 173 182 192
14 178 185 183 199 208
21 193 197 201 206 228
28 215 221 226 227 244
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Nevertheless, the existence of the dispersant and
surfactant improves the suspension stability of the
metal oxide nanoparticles in deionized water,
thereby guiding more dispersion. The trend of the
thermal conductivities over concentrations was the
reverse of the trend of viscosity as shown in Fig. 8,
implying that a rise in viscosity may lower the
thermal conductivity of the metal oxide nanofluids.
The dispersibility of the metal oxide nanofluids
dropped with the increase in viscosity, which stalled
the coagulation of the metal oxide nanoparticles in
the deionized water over a long period because of
the repulsive forces smaller than the attractive
forces. The flow feature of a solideliquid suspension
depended on the hydrodynamic force acting on the
surface of the solid particles. Fig. 8 reveals that the
viscosity of the metal oxide nanofluids increased

with an increase in the concentration resulting from
the increase in attractive forces among a large
number of metal oxide nanoparticles. The reason
was that the addition of the dispersant disturbed the
surface charges of the metal oxide nanoparticles,
and further reduced their surface tension [17, 18].
Table 3 presents the changes in absorbance over

four weeks for the metal oxide nanofluids at
different concentrations. The absorbance value is an
important index to discuss the suspendability of the
metal oxide nanofluids. The larger the absorbance
value, the more light is blocked by the metal oxide
nanoparticles when passing through the sample.
While detecting the absorbance, the sample fluid
should not be shaken violently and need to be static
for a long term to avoid measurement errors. The
experiment measured absorbance at 350 nm,
400 nm, and 450 nm wavelengths. On the first day,
higher concentrations gave larger absorbance
values because the metal oxide nanopowders were
more uniformly suspended all over the nanofluids
and impeded more light. The absorbance value
progressively lowered in the subsequent days
because the metal oxide nanoparticles in the nano-
fluids slowly aggregated and the grain size
increased with time causing the light to cross over
more easily. In the fourth week, there was an in-
crease in absorbance, although, it decreased slightly
at 400 nm and 450 nm. Therefore, it is improper to
compare the absorbance at 350 nm with the metal
oxide nanofluids at other concentrations.
For the 2 wt.% Al2O3 nanofluids, the absorbance

did not decrease with time at 350 nm. There was no
obvious variation in absorbance for the 2 wt.%
Al2O3 nanofluid, whereas that for the 3 wt.% to
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Fig. 7. IEP of the metal oxide nanofluids.

Table 2. Metal Oxide nanofluids thermal conductivities W/(m·K).

wt.%
Temp.

1.0 2.0 3.0 4.0 5.0

Al2O3 nanofluids 20 �C 0.61 0.58 0.57 0.57 0.56
25 �C 0.62 0.60 0.57 0.58 0.57
30 �C 0.63 0.61 0.58 0.58 0.58
35 �C 0.64 0.61 0.60 0.59 0.59
40 �C 0.64 0.63 0.61 0.61 0.60

TiO2 nanofluids 20 �C 0.59 0.59 0.57 0.56 0.56
25 �C 0.61 0.62 0.58 0.57 0.56
30 �C 0.62 0.63 0.62 0.60 0.58
35 �C 0.64 0.65 0.62 0.60 0.60
40 �C 0.66 0.65 0.63 0.62 0.62

ZnO nanofluids 20 �C 0.60 0.59 0.58 0.56 0.56
25 �C 0.61 0.60 0.59 0.57 0.58
30 �C 0.62 0.62 0.61 0.60 0.59
35 �C 0.64 0.63 0.62 0.62 0.61
40 �C 0.65 0.64 0.64 0.62 0.62
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5 wt.% nanofluids lowered slightly at 400 nm.
Among these concentrations, the Al2O3 nanofluid
with 2 wt.% had the highest absorbance values,
indicating that the 2 wt.% Al2O3 nanofluid was the
best in terms of absorbance. The decrease in the
absorbance of the TiO2 nanofluid at 1 wt.% was
more significant at 400 nm. Therefore, the larger
TiO2 nanoparticles agglomeration phenomenon
caused more serious precipitation. The precipitation
of TiO2 nanoparticles seemed to slow down with a
small difference between 2 wt.% and 5 wt.%. For the
ZnO nanofluid, the absorbance value of 1 wt.% to
5 wt.% reduced with time at 400 nm. The decrease in
the absorbance value of the 1 wt.% to 3 wt.% ZnO
nanofluids in 1e28 days was small while that of
4 wt.% to 5 wt.% decreased greatly.
The current and power densities were defined as

the current and power generated per unit area of the
battery tank, which also considers the influences of
temperature and concentration of the metal oxide
nanofluids. The area of each electrode under the
liquid surface was about 1151.50 mm2. There were
both positive and negative electrodes in the battery
tank, therefore, the total reaction area was about
2303 mm2. The current and power densities were
used to assess the power generation efficiency of the
battery tank. Fig. 9 presents the power generation of
metal oxide nanofluids. For the TiO2 nanofluid, it
can be seen that the effect of an increase in con-
centration on the magnitude of power density is not
large; as the temperature increased, the increase in
power density was about 30%, 21%, 12%, 9%, and
10%. For the ZnO nanofluid, the effect of concen-
tration on power density exhibited a decreasing

trend with the increase in temperature The increase
in power density was 20%, 14%, 17%, 7%, and 14,
indicating that the concentration has little effect on
the overall power density. As the concentration of
the metal oxide nanofluids increased, the power
density tended to increase. After the addition of the
surfactant, the metal oxide nanofluid reacted with
the metal oxide nanoparticles, and a small amount
of electrolyte was generated to increase the elec-
trical energy. The oxidation-reduction reaction rate
of the battery tank was accelerated, thereby gener-
ating more electrical energy. Thus, the increase in
ratio in power density decreased with an increase in
temperature.
According to the above-mentioned results, 2 wt.%

TiO2, 1 wt.% ZnO, and 2 wt.% Al2O3 nanofluids
were contrasted with each other to assess for better
thermophysical properties. Fig. 10 shows the ther-
mal conductivities of the metal oxide nanofluids
with different nanopowders. The thermal conduc-
tivity of 1 wt.% ZnO nanofluid was higher than
0.6 W/(m$K) at 20 �C. When the temperature was
raised to 40 �C, the 2 wt.% TiO2 and 1 wt.% ZnO
nanofluids were 0.65 W/(m$K). The overall thermal
conductivity of the 2 wt.% TiO2 nanofluid was better
between 25 �C and 40 �C except for a slight decline
in thermal conductivity at 20 �C. Fig. 11 presents the
average nanoparticle sizes of the metal oxide
nanofluids with different nanopowders. The trend
charts clearly show smaller average sizes of the
2 wt.% TiO2 nanofluid. The agglomeration increase
of nanoparticle sizes was respectively 19 nm of the
2 wt.% TiO2 nanofluid, 59 nm of the 1 wt.% ZnO
nanofluid, and 36 nm of the 2 wt.% Al2O3 nanofluid
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Fig. 8. The viscosity of the metal oxide nanofluids.
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during these 28 days. From the performance test,
alumina and zinc oxide nanoparticle sizes aggrega-
tion lead to two obvious inferences. First, the sur-
factants and dispersion technology used in the
present study had a better dispersion effect on the
TiO2 particles, and second, was that the nanoparticle
sizes of zinc oxide and aluminum oxide were larger
during the preparation of nanoparticles resulting in
less effective of dispersal of nanoparticles.
Under the influences of time, the precipitation of

nanoparticles can be discussed in terms of the
changes in the absorbance values. Particle precipi-
tation was affected by factors such as nanoparticle

sizes, material specific gravity, nanoparticle ag-
glomerations, and surfactant and dispersion tech-
nology. Fig. 12 demonstrates the trend graphs of the
absorbance of the metal oxide nanofluids at 400 nm
wavelength. The suspension of 2 wt.% TiO2nano-
fluid was better in the period of 1e28 days, with a
decrease in absorbance of 0.26. The corresponding
decrease in absorbance of the 1 wt.% ZnO nanofluid
was 0.29 and that of the 2 wt.% Al2O3 nanofluid was
0.28. Fig. 13 displays the power densities of the
metal oxide nanofluids with different nanopowders.
TiO2, ZnO, and Al2O3nanofluids were added to the
battery tank. The output powers of the battery tank

Table 3. Absorbance of metal oxide nanofluids at different concentrations.

Wavelength (nm) 1wt.% 2wt.% 3wt.% 4wt.% 5wt.%

Al2O3 nanofluids Day 1 350 2.26 2.37 2.42 2.45 2.49
400 2.33 2.48 2.45 2.51 2.53
450 2.36 2.51 2.58 2.63 2.66

Week 1 350 2.19 2.17 2.24 2.29 2.31
400 2.22 2.44 2.49 2.53 2.57
450 2.25 2.51 2.58 2.63 2.65

Week 2 350 2.02 2.16 2.22 2.30 2.35
400 2.18 2.44 2.48 2.49 2.55
450 2.20 2.50 2.53 2.58 2.61

Week 3 350 1.70 2.29 2.26 2.31 2.39
400 1.63 2.43 2.34 2.39 2.42
450 1.73 2.45 2.49 2.47 2.52

Week 4 350 1.69 2.27 2.27 2.31 2.41
400 1.62 2.41 2.34 2.34 2.44
450 1.71 2.30 2.47 2.48 2.53

TiO2 nanofluids Day 1 350 1.93 1.96 1.85 1.82 1.80
400 2.36 2.37 2.31 2.23 2.20
450 2.40 2.41 2.40 2.26 2.18

Week 1 350 1.90 1.91 1.81 1.76 1.73
400 2.31 2.30 2.24 2.12 2.13
450 2.38 2.36 2.35 2.22 2.12

Week 2 350 1.87 1.86 1.81 1.70 1.69
400 2.29 2.26 2.17 2.10 2.08
450 2.33 2.31 2.30 2.17 2.09

Week 3 350 1.81 1.82 1.73 1.67 1.64
400 2.13 2.12 2.11 2.01 1.99
450 2.30 2.29 2.27 2.09 2.05

Week 4 350 1.80 1.80 1.69 1.61 1.59
400 2.07 2.08 2.02 1.93 1.87
450 2.26 2.26 2.24 2.06 2.02

ZnO nanofluids Day 1 350 2.11 2.19 2.25 2.28 2.30
400 2.39 2.41 2.48 2.52 2.56
450 2.51 2.58 2.54 2.49 2.55

Week 1 350 2.03 2.14 2.21 2.26 2.27
400 2.34 2.35 2.36 2.42 2.39
450 2.43 2.45 2.51 2.36 2.43

Week 2 350 1.99 2.04 2.13 2.17 2.19
400 2.20 2.33 2.31 2.37 2.32
450 2.30 2.38 2.36 2.32 2.34

Week 3 350 1.87 1.99 1.99 2.03 2.09
400 2.12 2.20 2.20 2.22 2.26
450 2.15 2.26 2.28 2.28 2.29

Week 4 350 1.76 1.95 1.98 2.01 2.03
400 2.07 2.15 2.17 2.19 2.20
450 2.07 2.17 2.21 2.19 2.16
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Fig. 9. Power generations of the metal oxide nanofluids.

Fig. 10. Thermal conductivities of the metal oxide nanofluids.
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Fig. 12. Absorbance values of the metal oxide nanofluids.

Fig. 13. Power densities of the metal oxide nanofluids.
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were detected with different metal oxide nanofluids
and expressed as the power density. As the fluid
temperature increased, there was a concurrent in-
crease in the output power of the battery tank with
different metal oxide nanofluids. The output powers
of the 2 wt.% TiO2 nanofluid, 1 wt.% ZnO nanofluid,
and 2 wt.% Al2O3 nanofluid increased by 68%, 57%,
and 107%, respectively, with an increase from 20 �C
to 40 �C of fluid temperature. The overall output
powers of ZnO and TiO2were not much and low,
while the overall output power of 2 wt.% Al2O3

nanofluid was higher.

Conclusion

In the present study, these metal oxide nanofluids
were prepared to adjust the weight-percent con-
centration of the nanopowders and the surfactants
at the same time employing the microemulsion ul-
trasonic dispersion technology. The best suspension
stability of the alumina, TiO2, and ZnO nanofluids
were obtained at 2.0 wt.%, 2.0 wt.%, and 1.0 wt.%,
respectively, through four weeks. The viscosity of
metal oxide nanofluids was between 1.0 and 3.0 cP
with negative dispersibility, and their thermal con-
ductivities and the power generations were raised
with an increase in temperature. Finally, the TiO2

nanofluid had better thermophysical properties and
suspension stability, Al2O3 nanofluid had better
electrical properties, and TiO2 nanofluid the best the
overall thermoelectric properties among these three
in the thermoelectric generation experiments. The
present synthesis method is suitable for fabricating
the metal oxide nanofluids at a temperature be-
tween 20 �C and 40 �C and a concentration of 1 wt.%
to 5 wt.%.
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Nomenclature

A Area, m2

C Specific heat, kJ/kg�C
K Thermal conductivity, W/m�C
Q Heat transfer rate, W
T Temperature, �C
W Weight percent concentration, %
Abs Absorbance

Subscripts
p Nanoparticle
bf Base fluid
nf Nanofluid

Greek
m Viscosity, m2/s
r Density, kg/m3
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